2021-2022

The community of scholars at the University of South Carolina is dedicated to personal and academic excellence. Choosing to join the community obligates each member to the Carolinian Creed. Academic dialogue and civil discourse are the cornerstone of the educational system and crucial to individual growth. Students are encouraged to practice personal and academic integrity, respect the rights and dignity of all persons, respect the rights and property of others, discourage bigotry, while striving to learn from differences in people, ideas, and opinions, and demonstrate concern for others, their feelings, and their need for conditions which support their work and development.

1.0 Admission and Orientation

1.01 ADMISSION. Your admission as a degree applicant has been based on your previous college work, together with letters of recommendation and GRE scores. In a few instances, students are admitted as "non-degree" candidates. This category is used when a student does not present all the credentials needed for admission to a degree program but can benefit from our graduate program. Non-degree students may become degree candidates when their credentials are complete and they demonstrate capability to do successful graduate work for one or more semesters.
1.02 ORIENTATION. There will be an orientation session for all new graduate students.
1.03 PLACEMENT EXAMINATIONS. A series of examinations that serve both as advisory (to indicate your level of accomplishments) and qualifying examinations (to satisfy degree requirements) will be given to all new graduate students at the time scheduled on the Orientation calendar. These examinations will be given in the areas of analytical, biochemistry, inorganic, organic, and physical chemistry. You are expected to select and take at least two examinations. Calculators are welcome. A non-qualifying score is not counted against you in any way but a good performance on any of these examinations will qualify you in that area and, thus, place you further along in your graduate studies. See Section 4.00 regarding this point.
1.04 GRADUATE ADVISER. Dr. Sheryl L. Wiskur, Director of Graduate Studies, will act as your adviser in conjunction with the Admissions Committee. After you choose a research director, he or she will advise you on your academic program and registration.
1.05 ADVISING AND COURSE ASSIGNMENT. After you complete the placement examinations, you will meet with the Director of Graduate Studies to review preliminary registrations and a course of study designed to qualify you for the degree, and to prepare you for research. You are required to qualify in two areas of chemistry, accomplished either by (1) scoring sufficiently high on the qualifying examination or (2) by passing a "core course" with a B or better (see 4.03) in the area. You may sit in or audit courses in an area to review, supplement or develop new basic concepts if your background is deficient.
1.06 REGISTRATION. First year students and continuing students register via https://my.sc.edu/. First year students will register after orientation. Continuing students will
register during the preceding semester. First year students will carry three academic courses (9 credits) during the first semester and two academic courses (6 credits) during the second semester. After completing the first two semesters, you must register for three credits in each summer session and for six credits in each academic year session until you graduate. You must register in each session in which you are in residence including summer to receive a stipend. Registering for less than the recommended number of credits (or not registering at all) may result in loss or reduction of the departmental tuition supplement.
1.07 THE HONOR SYSTEM. We expect all of our graduate students not only to do their own work but also to report to the appropriate staff member any violations by others. Any graduate student guilty of a violation of these honor principles may be asked to leave. Honor, ethics and integrity are acutely important in the laboratory. Fraudulent data and any plagiarized material taken from the internet or other sources is likely to result in dismissal, retraction of publications and reexamination of degree(s) awarded.

From the University of South Carolina Honor Code: The Honor Code is a set of principles established by the University to promote honesty and integrity in all aspects of the campus culture. It is the responsibility of every student at the University of South Carolina to adhere steadfastly to truthfulness and to avoid dishonesty in connection with any academic program. A student who violates, or assists another in violating the Honor Code, will be subject to University sanctions.

Please print this page, sign, date and turn in to the Graduate Office.

Print Name

Your Signature
Date

2.0 Facilities

2.01 FACILITIES. The Department of Chemistry and Biochemistry occupies the entire John M. Palms Graduate Science Research Center (GSRC). In addition, there are some chemistry laboratories and offices in the Jones Physical Sciences Center (Jones PSC), Sumwalt (SMWALT), and Horizon I (HORIZN). Teaching labs and some classrooms are in the Science and Technology Building (STB). This map link can help you locate buildings.
2.02 LIBRARY. The University's Library holdings are housed in the Thomas Cooper Library (opened June 1976), a seven-story library building that is a short walk from GRSC. The collection in the science, engineering, pharmacy and related fields is primarily located in the Science Library, which constitutes the entire Lower Level 4 of the Thomas Cooper Library. There are some additional holdings on the Mezzanine level of the Library. The library is open 24 hours to students, faculty and staff with valid Carolina Card. The Science Librarian is in charge of the science level (Level 4), which is staffed by three assistant science librarians and several student assistants, who are ready to help you at any time. There are over three million volumes in the Thomas Cooper Library. They subscribe to about 30,000 journals either in print, online or both. The library also offers help in the form of research consultations and workshops, Scan and Deliver, interlibrary loan of books, the online Ask A Librarian service, and many other services. For more information, go to library.sc.edu or call 803-777-4866. You can also access the catalog online at www.sc.edu/libraries. Also, the medical school library has a large number of volumes of special interest to biochemists (https://uscmed.sc.libguides.com/). It is located at the UofSC Medical School near the VA hospital. Please see their website for hours of operation.
2.03 SAFETY AND HOUSEKEEPING. The Department is quite proud of the fine research and teaching facilities available in GSRC, Horizon, and the Science and Technology Building, and urgently solicits your cooperation in their proper use and maintenance. Specifically, we ask that you observe the following general guidelines:
(a) Safety glasses are absolutely necessary whenever and wherever experimental work is conducted. Teaching assistants must wear them when supervising undergraduate laboratories, and it is required that all students in their laboratory sections do so as well. Safety glasses are available in the Stockroom and in the University Bookstore.
(b) Contact lenses should not be worn by anyone working in the research or teaching laboratories due to the risk of increased injury from chemical splashes.
(c) As a safety precaution no one is permitted in the departmental laboratories or stockrooms without proper shoes. Teaching assistants are expected to enforce this policy in their undergraduate laboratory sections.
(d) Before you leave any experiment to operate unattended, please make sure that it does not constitute a possible fire or flood hazard. Specifically, if flammable solvents are involved it should be left in a closed hood. If this is not possible, check all joints to see that they are vapor tight. If running water is involved, make sure that all tubing is in good condition, that all
connections are tight (preferably wired) and that all connecting troughs and/or sinks are free of any debris (corks, Kimwipes, etc.) which could clog the drain. We have had several floods and fires caused by failure to observe simple precautions.
(e) The Department is equipped with both explosion-proof and non-explosion proof refrigerators. The latter are clearly marked and are not to be used for the storage of any chemicals in open containers. In addition, food is not to be stored in any refrigerators that are used for the storage of chemicals.
(f) No one will be allowed to handle or work with radioactive isotopes or around potentially dangerous sources of radiation, e.g., X-ray, microwave, laser, until he or she has been thoroughly instructed by the faculty member in charge on the proper safety precautions and procedures to be followed.
(g) The faculty member in charge of a laboratory should be informed immediately of any safety hazards or accidents. The Department Safety Committee should also be informed of all accidents that occur. Any complaints regarding potential safety hazards and any safety suggestions will be treated seriously and greatly appreciated. Emergency telephone numbers are posted beside every telephone in the Department.

Emergency: 911 Environmental Services: 7-2290

Health and Safety Services: 7-5269
(after hours - 7-4215)

For your own protection and to encourage safe work habits, the Safety Committee of the Department working in conjunction with the Safety Officer of the University will make periodic unannounced inspections of offices and labs. On joining a research group, the first order of business is to study the group and/or departmental chemical hygiene and safety plan. The department's Chemical Hygiene Plan template is located on the website under the Safety tab. Each research group has a safety officer that can guide you to correct protocols and standard operating procedures.

UNAUTHORIZED EXPERIMENTS. Experiments not directly related to your course work or research problem must be approved in writing (with a copy to the Assistant Chair) by your laboratory instructor or research director. Students who conduct unauthorized experiments will be denied access to the laboratories of the Department, will be refused chemicals or supplies from the Department stockroom and teaching assistants will be replaced.

All incoming graduate students are required to attend a short course on "Chemical hygiene/OSHA training" scheduled during orientation.
2.04 STUDENT DESKS and CHAIRS. These items will be furnished to new graduate student assistants. After selection of a research director, you will move to that professor's research area. We are generally not able to assign desks in the building for new students who are not graduate assistants.
2.05 KEYS. Keys to the labs and offices are available from Rachel Cooper in Room 113I, and will be issued as needed to graduate students.
2.06 MAIL. Students will have a mailbox in GSRC for University business only. Outgoing mail may be placed in the basket in the Department Office mail room. Pick-ups and deliveries are twice a day. Please do not have personal mail or packages delivered to the Department.
2.07 BULLETIN BOARD. The bulletin board in the student mailroom is reserved for notices of particular interest to graduate students. To avoid cluttering, we ask that all notices on this board be posted by the Chem/Biochem. Dept. Office only. Please check this bulletin board frequently.

3.0 Financial Support

3.01 FEES. Most graduate students in the Department receive a stipend from funds administered by the University. This support may be in the form of teaching assistantships, research assistantships, fellowships, or scholarships. Students pay any fees other than tuition (e.g. health center, technology, etc.). To receive the tuition supplement (tuition is paid for out of departmental or grant funds), you must register for a course load of nine credit hours for the first academic semester and for six credit hours each academic semester (Fall or Spring) thereafter. You must also register for three credit hours each summer session. Any additional fees must be paid at the time of registration, but they can be payroll deducted. Student activity cards for admission to athletic events can be purchased at registration. You must participate in the group medical insurance plan unless you have equal or better coverage. The student health center reviews alternate coverage and awards waivers to those who can prove they have comparable or better coverage. The cost of health insurance and health center access is covered by the college and university supplements. Injuries arising during official duties are covered by workmen's compensation. Graduate assistants are paid semimonthly by check. Federal and state income taxes will be deducted from these checks. The University requires direct deposit of your paycheck to your financial institution.
3.02 TEACHING ASSISTANTSHIPS. A teaching assistantship provides training in the fundamentals of chemistry and experience in leading a class of students. The experience is especially valuable for students who will eventually seek academic appointments. Teaching assistants devote 20 hours per week toward the supervision and operation of our undergraduate laboratory and/or recitation sections. A portion of the teaching assistant assignment in most courses is to assist in grading and recording grades for quizzes, final exams and homework, as may be required by the staff member in charge. In addition, as a TA you may be required to attend briefing sessions and you may be required to attend the lectures in the course. You should bear in mind that attendance at these briefing sessions and course lectures is an essential part of your duties. Teaching assistants who fail to satisfactorily fulfill the responsibilities assigned them may have their appointments revoked.

During a semester, illness or other conflicts may require a substitute for your teaching assignment. It is your responsibility to see that your assignment is met. Often you can arrange with other TAs that have similar assignments to trade sections to remedy a short-term conflict. You should always keep your teaching mentor/advisor informed of any changes. Please be aware
that if the Department has to pay someone to replace you, then your stipend will be reduced by that amount.

The teaching assistantship serves a second purpose, providing financial support for students to pursuing their research. Unsatisfactory progress on research may result in the cancellation of the teaching assistantship.
3.03 JOSEPH W. BOUKNIGHT GRADUATE TEACHING AWARDS. Since 1973, the Department is fortunate in being able to recognize outstanding teaching on the part of graduate assistants through these Graduate Teaching Awards, named in honor of Professor Emeritus Joseph Ward Bouknight. There are 6 awards given for the spring and fall semesters in the amount of $\$ 250$ each.
3.04 RESEARCH ASSISTANTSHIPS. Research assistantships are awarded on the basis of good academic standing, experience and interest in the research problems for which assistantship funds are available. The stipends are comparable to those of teaching assistantships. Research Assistantships are awarded on the recommendation of the individual faculty member responsible for the funds involved. The duties and hours are those set by the supervising faculty member.
3.05 FELLOWSHIPS, SCHOLARSHIPS AND OTHER SUPPORT. Fellowships and scholarships are sometimes available from industrial, government, and private sources. These may be allocated by the Department; they may be awarded competitively on an interdepartmental basis by the University or they may be national. The Department will attempt to inform you of all such support available and will be glad to assist qualified persons in applying. In this connection, beginning graduate students would be well advised to take the Graduate Record Examination, if they have not already done so. The awards of fellowships or scholarships are frequently based in part on the GRE scores of competing nominees. Students have been appointed for twelve-month terms and may expect support for both summer sessions as long as their work is satisfactory.

Circumstances may dictate additional course work and/or timetable alterations in the program of study for students with special fellowships or for part-time students. The Graduate Director, in consultation with the students' advisor and committee, may alter deadlines to suit these circumstances. Changes in other basic requirements or relief from specific regulations are addressed through petitions to the faculty by way of the Candidacy and Petitions Committee.
3.06 CONTINUING APPOINTMENTS. After an assistantship or fellowship has been awarded, you may normally expect continued support during the period of your graduate study. This support is contingent upon satisfactory performance of the duties of the assistantship, normal progress towards a degree, and satisfactory academic performance.

After the first semester. If the Departmental Grade Point Ratio (section 4.02) is below 2.66 for three chemistry courses (DGPR, see Section 4.02) at the end of your first semester, you will not be supported the following semester. If two chemistry courses are completed in the first semester the minimum DGPR for continued support is 3.0.

After two semesters. A DGPR of 3.00 is required for continuance in a degree program and for continued support after two semesters. The 3.00 DGPR regulation is in effect even if petitions allow postponement of course work beyond the second semester.

We do not support students in the M.A.T. or I.M.A. degree program.
3.07 LIMIT ON SUPPORT. No graduate student will be supported on teaching or research assistantships longer than five years for a Ph.D. degree. Candidates for the M.S. degree will not be supported after the first semester of the third year of attendance (2 years and one semester). Students who have not been admitted to Ph.D. candidacy by the end of the first semester of their third year will not be supported.
3.08 OUTSIDE WORK. You are expected to devote full time to your assistantship duties and graduate studies; therefore, outside employment is not permitted. Assistants may accept fees for tutoring undergraduate students. However, no graduate assistant may accept a fee from any student during a semester when he or she has any responsibility for that student's grade in a course or laboratory.
3.09 WORK DURING UNIVERSITY RECESSES. Teaching duties normally begin with the general meeting of teaching assistants at the start of each term and end when laboratories have been checked out, the final examination in the course to which they are assigned has been graded, and the student has been released by his or her faculty supervisor. Students being paid entirely or in part from grants to individual faculty members must work out schedules with their research director.

4.0 Regulations and Degree Requirements

4.01 GRADES. With the exception of thesis and dissertation courses, letter grades are awarded for courses; $\mathrm{A}, \mathrm{B}+, \mathrm{B}, \mathrm{C}+$, and C are passing grades, while $\mathrm{D}+, \mathrm{D}$ and F are not passing grades in the Graduate School. Graduate credit may be earned with a grade of C, but a graduate degree cannot be awarded unless the student has an overall average of B and a B average on all 700- and 800-level courses. According to the Graduate School regulations, grades below B in as many as twelve semester hours of work will disqualify a student for a graduate degree. (Note that $\mathrm{A}=$ $4.00, \mathrm{~B}+=3.50, \mathrm{~B}=3.00, \mathrm{C}+=2.50$, etc.) (Section 3.07)
4.02 DEPARTMENTAL GRADE POINT RATIO. The Department finds it convenient to compute a Departmental Grade Point Ratio (DGPR) to aid in the evaluation of your performance. This differs from the official University Grade Point Ratio in that the DGPR includes the graduate courses that you are required by the Department to take, both within or outside the Department, but does not include grades on research, thesis, seminar and dissertation (701, 790, 791, 898, 899).
4.03 QUALIFYING FOR THE PH.D. AND/OR M.S. DEGREES. A candidate for the M.S. or Ph.D. degree must qualify in two areas including his or her major. Paths to Qualification in an area include:

1. A satisfactory score on the placement/qualifying examination given upon entrance - or -

2. A grade of B or better in one of the area graduate core courses.

Entering students must attempt at least two qualifying exams to be permitted to register for classes and to be assigned a TA position. A student who does not qualify by the end of their second semester of the first year will be terminated.
4.04 CORE COURSES. The 700 level "core" courses are the courses that each division requires its students to take. A Ph.D. candidate must take all "core" courses in their major ${ }^{1}$. A list of graduate courses offered by the department with brief course descriptions can be found in Section 11.00.

Area	Core Courses $^{\mathbf{1}}$	Specialty Courses
Analytical Chemistry	722,723	729
Biochemistry	751,753	752,759
Inorganic Chemistry	$711,712,713$	719
Organic Chemistry $^{\text {Physical Chemistry }}{ }^{2}$	735,736	$739(633)$
	$742,743,744,747$	745,749

${ }^{1}$ In the event that a core course is not offered in a student's first year, the division will identify an appropriate substitute.
${ }^{2}$ Physical majors are required to take three physical chemistry core courses offered in their first two semesters.

4.05 COURSE REQUIREMENTS.

Ph.D. Requirements: A student in the Ph.D. program must pass at least five 700-level courses in the Department of Chemistry and Biochemistry during the first two semesters including at least three in your area and one or two in an area or areas outside your major. Courses numbered $701,790,791,898$, or 899 may not be used to meet these requirements. The Department may adjust course requirements for a student entering with prior graduate course work. With the approval of your Advisory Committee (4.07), you may (a) take one specified 600- or 700-level course outside of the Department of Chemistry and Biochemistry from a list of preapproved courses maintained by the Admissions/Petitions Committee in place of one of the 700-level chemistry/biochemistry courses outside the student's primary area or (b) petition the Admissions/Petitions Committee of the Department for permission to substitute a course not on the preapproved list. The petition must be approved by the Admissions/Petitions Committee before registration for the course. The grade received in any course so substituted will be included in the computation of the DGPR. At the discretion of the Admissions/Petitions Committee and within the limitations prescribed by the Graduate School, courses taken at another University may be accepted to satisfy these requirements.
M.S. Requirements: A candidate for the M.S. degree must pass at least three 700-level courses in chemistry/biochemistry of which at least one must be in your major field and at least one in an area outside the major. Courses numbered 701, 790, 791, 898, or 899 may not be used to meet
these requirements. Not more than 12 of these hours may be in courses in the 500 or 600 level. Your Advisory Committee (4.07) may require other courses.
4.06 RESEARCH/CHOICE OF ADVISOR. The Ph.D. and the M.S. degrees are research oriented degrees. Consistent with this concept is the fact that all other aspects of graduate work (courses, seminars, etc.) are geared towards research. To begin research, it is necessary to have approval and cooperation of a Research Advisor. Beginning students should become familiar with the research in the Department and are required to discuss research programs with at least three faculty in the student's area of interest (analytical, biochemical, inorganic, organic, or physical). Faculty areas of research are detailed in section 9.02 and 11.00. Students are not restricted to one area and are encouraged to interview more than 3 faculty. The Faculty Research Seminar Series in late August/early September, which is required of all first year graduate students, will be of great help in learning about faculty research programs. Minimum interviewing must be completed by October $1^{\text {st }}$ (March $1^{\text {st }}$, January entry) as evidenced by the interview form (section 9.03) turned into the Graduate Office. You are required to clear this choice with the Director of Graduate Studies on or after COMMITMENT DAY by turning in the Research Advisor Selection form 9.04 to the graduate office. For Fall entry, Commitment Day is October 1; January entry, Commitment Day is March 1st. You must choose a research director by November $15^{\text {th }}$ for Fall entry and May $1^{\text {st }}$ for January entry. After selection of a research advisor/mentor, you should concentrate on research throughout the rest of your graduate program. This should be your greatest challenge and the focus of the major portion of your energy. Please note that to maintain graduate student support and for continuance in the program, you must have a research advisor and show progress toward the advanced degree.
4.07 RESEARCH ADVISOR AND DOCTORAL COMMITTEE. The faculty member who agrees to become your Research Advisor also becomes chairman of your Ph.D.-Doctoral Committee (Advisory Committee) for all actions except the PLAN, PROPOSAL and DISSERTATION defense. Your committee will be selected by you, in consultation with your research advisor, and with the approval of the faculty members involved by the end of May (Dec for January entry). The make-up of the doctoral committee should best match the student's research project in order to obtain direction and guidance. The Graduate Director reviews the committee selection and requests the Graduate School appoint the committee (via G-DCA form). The Doctoral Committee is charged with the responsibility of determining and monitoring your course program and your general progress throughout the remainder of your studies at UofSC. The Doctoral committee consists of at least four members: (i) the research advisor, (ii) two other faculty members in the Department of Chemistry and Biochemistry (one in and one outside the student's area), and (iii) one faculty member outside the Department. Your overall program should be reviewed by the committee during or before the Research Plan (M.S. and Ph.D.) and Proposal (Ph.D.) oral examinations and a finalized Ph.D./M.S. program completed (sections 9.08 and 9.09) and submitted to the Director of Graduate Studies. The faculty member in your major area serves as chairman for the Research Plan, Proposal and Dissertation Defense examinations. Your advisor(s) serves as a faculty member in your major area for the Plan. At the discretion of the advisor, a committee meeting may be called in the 3rd and 4th year to review progress (see section 4.13). The Ph.D. Advisory Committee must meet and review progress toward the Ph.D. in the 5th year; committee input is required for any petitions to consider extension of support beyond the 5th year. Following the Research Plan, a M.S. degree candidate's committee will be narrowed to consist of the advisor and customarily a faculty member in the student's major area.

Switching research advisor. You must have a research advisor and show progress towards a degree. If at anytime an adviser chooses to abate their sponsorship of a student, the student will be given two weeks to select a new advisor before the Department terminates support and degree status.

The changing of research directors is a very serious action. Recognizing that this occasionally occurs, strict protocols for changing groups have been developed to protect the interests of faculty and students. If you are contemplating a change, you should see the Director of Graduate Studies immediately. Improper conduct can endanger degree status.
4.08 DEGREE STATUS AT END OF YEAR ONE. At the end of the second semester of the first academic year, each beginning graduate student's work (courses and qualifying) will be evaluated. If you have a DGPR (4.02) of 3.0 or greater, are qualified in two areas (4.03) and have joined a research group you are authorized to continue work towards an advanced degree. If not, you will be required to discontinue work toward an advanced degree.
4.09 CHEM 790 and 791. All graduate students, MS or PhD candidates should take Chem 790 (Introduction to Research) for credit during the third semester and Chem 791 (Introduction to Research) for credit during the fourth semester. The grade submitted for these courses is assigned by your advisor based on research progress.
4.10 Student Research Plans, Oral Comprehensive Examinations. In your 3rd semester, you must submit a copy of the final description of RESEARCH PROGRESS AND PLANS to the Director of Graduate Studies (i.e., the Graduate Office) and each of your committee members together with a date, time and place (approved by your committee) for the oral presentation of the plan to your Advisory Committee (see next paragraph for scheduling). Use the "Plan" title page in the back of this handbook (section 9.05) as the cover page of the Plan. Your advisor must sign the title page before it will be accepted by the Director of Graduate Studies. The PLAN shall serve as the ORAL COMPREHENSIVE EXAMINATION for the Ph.D. degree (i.e., this examination also satisfies the Graduate School requirement for a Comprehensive Assessment of Candidates for the M.S.). Thus, your full advisory committee (4.07) (or substitute members) must be present for the examination. The committee will question you on the (a) specific knowledge of the research project, (b) general knowledge of the research field and (c) research progress to date.

Scheduling of the Plan: If the Plan semester occurs in the Fall, the Plan must be defended between the first day of the semester and November 15, and must be scheduled by September 15. If the Plan semester occurs in the Spring, the Plan must be defended between the first day of the semester and April 15, and must be scheduled by February 15. (If any of these dates falls on a weekend, the deadline is the next business day.) After you schedule the date and time of the plan defense with the committee members, notify the Director of Graduate Studies (send the email to the Graduate Office) of the defense date and time. You will turn in a final copy of your plan to the Director of Graduate Studies (this means the Graduate office) and your doctoral committee one week before the defense date. Hardcopies of the (1) final Plan, (2) the plan cover sheet with the top half filled out (title, submission date, advisor signature, and committee member names), and (3) a copy of your unofficial transcripts must be turned in to the Director of Graduate Studies
(i.e. the Graduate office). You only need to submit a copy of the plan (email or hardcopy) to your doctoral committee. Ask which one they prefer.

You should consult your research advisor for overall content, emphasis and scope of the Plan. You should follow the format described below, unless your division has specific guidelines that are different. Consult your research advisor for the format you will use. The written report should be more substantial than an outline and should employ standard ACS format for both the experimental section and references. The emphasis will be on what the proposed research will tell us about the nature of the physical universe, an understanding of the various techniques to be employed in attacking the problem, as well as research progress. The written Plan will include: (i) an overview of the area to be studied, a discussion of your own research accomplishments to date, plans for future research, key references (limit of ten double spaced pages not including references) and (ii) a detailed experimental section (no page limitation). You will present an oral summary of your research plans and progress to date to the Advisory Committee. The oral examination of (a) specific knowledge of the research project, (b) general knowledge of the research field and (c) research progress to date will follow your oral presentation. The questions of general knowledge of your research field will be based on material of the type presented in the graduate core courses of the major.

The committee will separately vote (pass or fail) on each of the three components of the written plan and its oral defense: (a) knowledge of the research plan, (b) general knowledge of the research field and (c) research progress to date. Passing requires a favorable three fourths vote of the committee in each case. Successful passing of all three components is required for you to move forward in the Ph.D. track. Passing only two of the three components of the Research Plan leads to a postponement of the Independent Research Proposal (4.11) to early in your fifth semester and to a re-defense of the part of the Research Plan not passed. The re-defense must take place during your fourth semester (either February 16 - March 15 or October). If you pass less than two of the three components of the original defense of the Research Plan or do not pass the repeated component in the re-defense of the Research Plan, you will be placed in the terminal M.S. degree category or, in extreme cases, terminated. The committee may also require you to take additional or remedial course work.

Whatever the outcome, you must provide a copy of the signed cover sheet and the final draft of the research plan to the graduate office to be placed in your departmental file.

After the Plan is successfully passed:

After successfully passing the Research Plan (i.e. a Full Pass), the committee will next consider issues of the timing, scope and research advisor involvement in the Independent Research Proposal (4.11). In each case, your research advisor will make a recommendation to the committee, which will then discuss and vote on the recommendation. These committee decisions should be duly noted on the cover page of the Plan (9.05).

1. Timing of the Proposal - Should you submit and defend the independent research proposal in your fourth or fifth semester?
2. Scope of the Proposal - The graduate handbook (4.11) defines the independent research proposal as "involving roughly three elements: (1) experimental or theoretical techniques, (2) classes of compounds to be studied, and (3) chemical or physical properties to be determined." The committee makes the decision regarding the number of elements that can be the same or even similar to those employed or studied by the student in the course of the dissertation research or by others in the research group. They will choose between one or two elements being the same. At least one of the elements should be new or original. This means you will write an independent research proposal in which two of the three above elements are different from your own research - or in which one of the three elements is different. Note: The expectation that one of the elements should be new or original would not change.
3. Involvement of the Research Advisor in the Proposal Development - Should your research advisor be significantly, minimally or not involved in developing the original idea into the submitted proposal?
4.11 PRE-PROPOSAL MEETING, INDEPENDENT RESEARCH PROPOSAL, AND RESEARCH PROGRESS UPDATE. The Department of Chemistry and Biochemistry uses the independent research proposal to fulfill the Graduate School's requirement of a written comprehensive examination for the Ph.D. degree. The proposal is due in the 4th or 5th semester (see end of section 4.10) and the submission of this requirement must be preceded by a PREPROPOSAL meeting (see below).

Proposal: In your 4th or 5th semester (see end of section 4.10), you must submit to the Director of Graduate Studies (i.e., the Graduate Office) and the Advisory Committee copies of a final independent research proposal, together with a date, time and place for the oral defense. It is your responsibility to arrange with the members of your PROPOSAL committee the time and place of the examination (see below). Use the "Proposal" title page in the back of this handbook (section 9.06) as the cover page of the PROPOSAL. The PROPOSAL serves as the WRITTEN COMPREHENSIVE EXAMINATION, which is a requirement of the Graduate School. Thus, your full advisory (doctoral) committee (4.07) (or substitute members) must be present for the defense.

Scheduling of the Proposal: If the Proposal semester occurs in the Spring, the Proposal must be defended between the first day of the semester and April 15, and must be scheduled by February 15. If the Proposal semester occurs in the Fall, the Proposal must be defended between the first day of the semester and November 15, and must be scheduled by September 15. (If any of these dates falls on a weekend, the deadline is the next business day.) After you schedule the date and time of the proposal defense with the committee members, notify the Director of Graduate Studies (i.e., the Graduate Office) of the defense date and time. Make sure you allow adequate time for a pre-proposal meeting (see below). The final Proposal must be turned in to the Director of Graduate Studies (i.e., the Graduate Office) and the Advisory Committee one week prior to the defense date.

Pre-Proposal Meeting: Your Doctoral Committee is asked to advise you on the suitability of your choice of a topic for the research proposition. As soon as you have a good idea of what your proposal plan will be, your Doctoral committee should be apprised of the project. The Doctoral Committee will meet (PRE-PROPOSAL MEETING) for a short period of time while you briefly
outline the proposal project. Because the pre-proposal meeting is an unofficial meeting of the committee, attendance by the outside of the department member is optional. Extended presentations or handouts are not advisable at this time. Each committee member is expected to recommend to either "proceed" or "look for a new topic" to the committee chairman. A recommendation to look for a new independent research proposal topic should in no way be construed as a failure and this recommendation carries no penalty. At the same time, you should be aware that advice to proceed with the proposed topic is no assurance that the exam will be passed or even that committee members consider the proposal to possess sufficient originality to merit a pass on the oral exam itself should the topic be competently developed and presented. Advice to proceed at this point simply means that there are no obvious conflicts with the proposal guidelines. If, at a later time, you find it necessary or desirable to change the thrust of the proposal, no new meetings or outlines are required unless you desire a recommendation from your committee on the change. However, you should be aware that the advice to proceed was based on the original outline. At this pre-proposal meeting, the advisor or committee may require a write-up of post-PLAN experimental progress that comes due at the proposal defense.

The Independent Research Proposal defense should begin with a brief review of postRESEARCH PLAN research progress consisting of 4-6 figures, tables, etc. The summary of research progress will be an oral report unless otherwise indicated at the pre-proposal meeting (above). The defense is open to other interested faculty members. A pass shall constitute a favorable vote of at least 75% of the PROPOSAL committee. Should you fail the initial oral proposal, you must present a second independent research proposal within 90 days of your first presentation. This proposal must be an entirely new idea unless otherwise specified by the Doctoral Committee. Should you fail this second examination, you are permanently disqualified for the Ph.D. degree. If you fail the defense of the Independent Research Proposal you will be placed in the terminal M.S. degree category or, in extreme cases, consigned to nondegree status. As noted in section 4.10, the Research Plan-Oral Comprehensive Exam satisfies the Graduate School requirement for a Comprehensive Assessment of Candidates for the M.S. In either proposal, the committee can delay a final decision on pass or fail and make specific recommendations that you must fulfill to the satisfaction of the committee within 20 days. (If the action of the committee at the end of this period is to fail for the first proposal attempt, you have 70 days to present the new proposal.)

The independent research proposal tests your ability to conceive and to critically evaluate a significant research question, to relate the questions to previous work, and to develop a practical plan designed to obtain information upon which an answer to the question may be based. The proposal also tests your ability to organize, present and defend your conception under the give-and-take of a seminar situation. The research proposal maybe thought of as consisting of (1) the conception of an idea, (2) the development of the idea and the written expression of the plan of the proposal, and (3) the oral defense of the idea. It should be understood that the oral defense of the idea is considered the most important part of these three.

Proposals should consist of an in-depth analysis of the topic, including background material of a significant but previously uninvestigated or incompletely investigated chemical question along with a detailed plan for its investigation. The scope of the proposal should be roughly between that of an M.S. Thesis and a Ph.D. Dissertation. To aid you as you prepare your oral research proposal, the following guidelines have been established by the Department of Chemistry and

Biochemistry. The proposal can be thought of as involving roughly three elements: (1) experimental or theoretical techniques, (2) classes of compounds to be studied, and (3) chemical or physical properties to be determined. The student might wish to consider a fourth element: why is the proposed research important to science? Unless recommended otherwise by your committee after the Research Plan (see end of section 4.10, no two of the three elements should be the same or even very similar to those employed or studied by the student in the course of his dissertation research or by others in his or her research group. At least one of the elements should be new or original. The level of involvement of your research advisor will also have been determined during the discussion following the Research Plan (see end of section 4.10.

The written proposal should be no more than 10 pages double-spaced. You should follow the format described here, unless your division has specific guidelines that are different. Consult your research advisor for guidance on this. As a rough guide, it is recommended that the proposal have 2-4 typewritten pages of background material, 4-6 pages detailing the actual proposal and approximately one page of references, which do not count towards the page limit. The ACS Style guide for authors should be consulted for abbreviations, standard footnotes and reference format, etc.

Participation in an oral research proposal is open to all faculty, but the PROPOSAL Committee makes the final judgment as to its acceptance. When the proposal is passed, you are eligible for admission to Ph.D. candidacy (4.12) once the research advisor verifies that research is progressing well.
4.12 ADMISSION TO DEGREE CANDIDACY. Upon successful completion of the independent research proposal (section 4.11) the Department will consider admission to Ph.D. degree candidacy. This decision is based upon your research and academic progress and a recommendation from your research advisor. Students who have not demonstrated ability to pursue a research program may be left in provisional Ph.D. degree candidacy. The Graduate School requires a grade point ratio of 3.0 or better for admission to candidacy for the M.S. or Ph.D. degrees. Ph.D. degree seeking students should register for CHEM 899 (at least 12 credits of CHEM 899, but not more than 30, must have been taken by the time of Graduation). M.S. students should register for CHEM 898. If you have not been admitted to Ph.D. degree candidacy by the end of the $5^{\text {th }}$ semester (excluding summer sessions), you will be placed in the M.S. degree program and the 2 -year 1 -semester support limitation (section 3.08) applies. A petition to the Petitions Committee is then required for nomination to Ph.D. candidacy.

Admission to Ph.D. degree candidacy. In summary, admission to Ph.D. candidacy results from successful completion of (a) the Research Plan (4.10), (b) the Research Proposal (4.11) and (c) a short recommendation from your advisor indicating that research is progressing well. A Doctoral Program of Study (DPOS) must also be prepared and submitted to the Graduate School as part of this process.

Admission to M.S. degree candidacy. For a student pursuing a Master's degree, the M.S. candidacy recommendation can be considered after passing the research plan at the M.S. level (section 4.10). As with Ph.D. candidacy, this decision is based upon your research and academic progress and a recommendation from your research advisor. A Masters Program of Study (MPOS) must also be prepared and submitted to the Graduate School as part of this process.

4.13 ANNUAL COMMITTEE MEETING OF THE STUDENT AND THE ADVISORY COMMITTEE

Fourth Year. During the first month of your fourth year, the Graduate Director will contact each student and their advisor and ask them whether research is proceeding well for graduation in less than five years. If either you or your advisor indicates that there are any problems or that either wish to have a committee meeting, a meeting will be scheduled by the student to discuss the problems.

Fifth year. By the end of the second month of your fifth year (i.e., October 15 or March 1), in consultation with your research advisor, you will produce a thesis outline and an approximate (target) defense date. This information will be submitted to the chair of your advisory committee by the indicated date. The committee chair will examine the thesis outline and target defense date. If problems are identified or if either you or your advisor wishes to have an advisory committee meeting, you will schedule a meeting to discuss the problems. The chair of the committee will report the result of the process to the Graduate Director.
4.14 GRADUATE STUDENT SEMINARS. You are required to participate in Graduate Student Seminars, which are handled at the divisional level. Participation is defined as attendance and discussion as well as presentation.

1. First Seminar. You will register for and present one seminar before the end of your second year. You are encouraged to present your first seminar in your first year.
2. Second Seminar. For Ph.D. candidates, a second seminar is to be presented before the end of your third year.

Grades for student seminars will be assigned by the divisional faculty seminar chairman who will also review your performance with you after your talk. Students who present seminars are required to furnish all faculty and graduate students with an outline well before the date of the presentations. The Faculty Chairman of the divisional seminar should be consulted on selection of a topic and form for the outline.
3. Ph.D. Defense Seminar. In addition, each Ph.D. candidate will present a public seminar describing his or her dissertation research immediately before the defense of the dissertation with the examining doctoral committee present. The abstract announcing it should be submitted electronically to the Graduate Office at least a week in advance.

Faculty Research Seminars. All first-year graduate students entering in the Fall are required to attend the Faculty Research Seminar Series. In these seminars, general regulations and policies of the department and the Graduate School will be discussed and the members of the faculty will review their areas of research. Attendance is compulsory.
4.15 SEMINARS WITH INVITED SPEAKERS. On a regular and frequent basis seminars are given by invited speakers who represent research efforts in all fields of chemistry and biochemistry. The University of South Carolina has been fortunate in having many of the world's leading chemists and biochemists present seminars here over the last few years. You are
expected to regularly attend these seminars for the overall program constitutes an effective means for exposure to work and people outside of, as well as inside of, your immediate research area.
4.16 FOREIGN LANGUAGES. There are no specific language requirements for the M.S. and Ph.D. degrees. The Department of Foreign Language offers intensive reading courses that may be helpful for your research program.
4.17 M.S. THESIS AND PH.D. DISSERTATIONS. Candidates for the M.S. degree must present a thesis that embodies the results and interpretation of original research. Both your Research Advisor and the Second Reader must approve the thesis. The Second Reader is customarily a faculty member in the same area selected by you or your advisor. The thesis should be given to the Research Advisor and the Second reader at least one week before signatures are needed.

The heart of the Ph.D. degree is the dissertation, which is the culmination of an original investigation resulting in a real contribution of knowledge. The dissertation should be given to your committee at least one week before your oral examination.

The thesis and dissertation must go through a format check through the Graduate School office. You can find information concerning requirements of format, style, etc on their website, as well as the format check submission link. (www.gradschool.sc.edu)
4.18 DEFENSE OF DISSERTATION. After the dissertation has been completed and approved by the Research Advisor, as a candidate for the Ph.D., you will present a dissertation seminar to the faculty and defend your dissertation by an oral examination before your Doctoral Examination Committee (which has the same composition as the Doctoral Advisory Committee, section 4.07) and any interested faculty members. This defense is a final opportunity to demonstrate to the faculty that you have developed into a mature scientist worthy of respect and commendation.

No oral examination is required for the M.S. degree.
4.19 FINAL REQUIREMENTS AND FEES. Steps toward the M.S. and Ph.D. degrees are outlined in sections 5.00 and 6.00. Deadlines shown in these tables should be noted and the master schedule should be consulted for specific dates. The advisor(s) pays for their bound copy. The chemistry department pays for the bound copy that becomes a part of the chair's library.
4.20 PETITION AND APPEAL PROCEDURE. The Department's Admissions Committee functions as the Petitions Committee (Candidacy, Examination and Petitions Committee) for graduate student appeals or requests of temporary relief from a departmental academic regulation. Issues between the graduate student and advisor(s) are mediated by the Director of Graduate Studies but may be referred to the Petitions Committee for final resolution.

PROCEDURE: A written appeal or petition with appropriate supportive materials is submitted to the petitions committee via the Director of Graduate Studies, the Graduate Administrative

Assistant or any committee member. The committee considers issues with input from the Director of Graduate Studies for students that do not have an advisor, the student's advisor, the student's Doctoral Advisory Committee and other relevant sources. The committee makes a judgment, which is communicated to the student, the student's advisor and appropriate departmental personnel. Judgments are presented in the agenda of the next departmental meeting and may be discussed or modified. Reviewed judgments are put into action by the Department. Judgments are normally accepted by the faculty, but the petition committee's decision can be appealed directly to the faculty at a regular faculty meeting.

Petitions pertaining to course requirements must be submitted prior to registration for the course in question.

If a student loses support (section 3.07) or is disqualified from a degree program, the Petitions Committee considers a change of status having remedied the disqualifying factor(s).

Procedures for appeals and petitions relative to Graduate School regulations appear in the Graduate Studies Bulletin under Academic Regulations.

5.0 Check Points for the Master of Science Degree in Chemistry

1.	Steps Completion of placement/ qualifying examinations	Timing Immediately prior to first registration	Responsibility Student (administered by the Department)
2.	Advisement (by appointment) to plan course of study	During registration period, lst semester	Student and Director of Graduate Studies
3.	Completion of Interviewing	October 1 (March 1) of the first semester.	Student

17. Degree Awarded
18. Exit Interview

Commencement
After thesis completed

President of the University
Student \& Graduate Director

6.0 Check Points for the Doctor of Philosophy Degree in Chemistry

Steps

1. Completion of placement qualifying examinations
2. Consultation with Graduate Advisor for program planning
3. Completion of Interviewing
4. Choice of Research Advisor and Major
5. Completion of Qualifying
6. Completion of course requirements
7.. Appointment of Ph.D. Advisory Committee
7. Register for 898 for research
8. Research Plan and Oral Comprehensive. Register for CHEM 790
9. Graduate Student Seminars
10. Register for CHEM 791
11. Pre-Proposal meeting
12. Research Proposal and Written Comprehensive
13. Admission to Ph.D. degree candidacy
14. Ph.D. Program of Study (DPOS) approved by

Timing*

Immediately prior to initial registration

During registration period, and 1st semester

October 1 (March 1) of the first Student semester.

After Oct. 1 (Mar.1) but by Student Nov. 15 (May 1)

End of 2 ${ }^{\text {nd }}$ semester if not completed earlier

As soon as possible (normally done in 2 or 3 semesters)

By the end of May (Dec with Jan. entry)

Starting summer of $1^{\text {st }}$ year until the last year; when writing dissertation, take 899.

Mid-3rd semester

One by the end of $2^{\text {nd }}$ year

Fourth semester
Early $4^{\text {th }}$ or $5^{\text {th }}$ semester

Mid-4 ${ }^{\text {th }}$ or $5^{\text {th }}$ semester

After passing Research Proposal

In conjunction with admission to Ph.D. candidacy

Responsibility

Student (administered by the Department)

Student and Director of Graduate Studies

Student (administered by the Department)

Student

Student and Research

Adviser
Student

Student, defended in front of advisory committee

Student \& Divisional Seminar Chairman

Student
Student with advisory committee

Student, defended in front of advisory committee

Research Advisor and Director of Graduate Studies

Student, Research Advisor, and Director of Graduate

Advisory Committee and filed with Graduate Office
16. Graduate Student Seminars
17. Completion of planned course of study
18. Complete required 60 credits of course work by taking 898 \& 899. At least 12, but not more than 30 , credits of 899 is required.
19. Completion of dissertation
20. Apply for graduation on my.sc.edu; records check of all degree requirements.
21. First draft of dissertation to Research Adviser
22. Appointment of examining committee by Dean of the Graduate School, usually identical with Advisory Committee
23. Submit unbound, revised dissertation with approval of Research Adviser, to the Examining Committee
24. Dissertation Seminar
25. Defense of Dissertation Examination; obtain signature of committee on dissertation approval page.
26. Make necessary corrections of dissertation; upload dissertation to UMI, submit 350 or less word abstract, at

Studies

Second by the end of $3^{\text {rd }}$ year
Student \& Divisional Seminar Chairman

Student

Student

As soon as possible (the Student average student reaches this point within four $1 / 2$ years!)

On or before fifteen class days Student after the beginning of the semester

About eight weeks before the Student dissertation is due in Graduate School Office

As soon as practical

Allow at least one week for committee approval

Immediately preceding the dissertation defense

At least thirty days prior to date of graduation

Student \& Research Advisor

Student \& Examining Committee

Research Advisor, Examining Committee and Graduate Director

Student

Graduate School Office. Be sure to check that all final fees are paid.
27. Degree Awarded

Commencement
28. Exit Interview and binding of After dissertation completed Student \& Graduate Director President of the University work
*Timing is based on a Fall entry, January entry has similar due dates noted in parentheses.

7.0 Faculty and Staff

A complete list of faculty and staff can be found on the following chemistry and biochemistry website:
https://sc.edu/study/colleges_schools/chemistry_and_biochemistry/our_people/directory/index.p hp

Building abbreviation list:

GSRC - John M. Palms Center for Graduate Science Research
JONES (PSC old designation) - Jones Physical Science Center
SMWALT Sumwalt College -
HZNI - Horizon I
STB - Science and Technology Building

8.0 Chemistry Buildings - Information

Please go to the departmental web page for room and facilities. The Chemistry and Biochemistry office is located in GSRC 113. GSRC has offices, research laboratories and research support facilities. Jones (PSC) has some chemistry and biochemistry offices, research laboratories, classrooms and research support facilities. STB has a lot of the teaching classrooms and all of the teaching laboratories. Sumwalt has some chemistry and biochemistry offices, teaching and research laboratories, classrooms and research support facilities. Horizon I has organic research offices and research laboratories.

9.0 Faculty Research Areas and Interviews

9.01 The choice of a research director and project is the most important decision of your graduate program. Because this decision has to be made rather early in your graduate studies (Section 4.06) we have formalized some aspects of the interviewing and selection process. To be eligible to select a research director on or after the COMMITMENT DATE (October 1, Fall entry; March $1^{\text {st }}$, January entry), you must have attended the Faculty Research Seminars (or equivalent process) and interviewed at least three faculty members in the major in which you wish to do research (analytical, biochemistry, inorganic, organic, and physical) by October 1 (March 1st, January entry). [The initialed interview sheet (9.03) turned into the graduate office validates completion of the introductory interviews.] You can change your area of interest and you can interview additional faculty. The research interest areas of all the faculty are defined in section 11.00 below. You are not restricted to considering one area of interest and a number of the faculty have research programs that cover more than one area. You are encouraged to explore all possibilities before you solidify your choice of general research area and a specific research director. Space and resource limitations could restrict openings in a research group so a second choice can be submitted on Form 9.04. This second choice is only to start discussions should the first choice fail. On or after the commitment date you can submit Handbook Form 9.04 to the Director of Graduate Studies to indicate your choice of research advisor(s). Assuming no complications, notification of selection into a research group will be within a week. Students with significant prior graduate experience (e.g. M.S. degree) can request exemptions from the official commitment date.

To facilitate the interviewing process, the faculty interview sheet (9.03) should be taken with you to each of your faculty interviews so that the appropriate faculty can initial and date the form in section 9.03. To approve your choice of research director, the completed interviewing form (9.03) will have to be presented to the Director of Graduate Studies. The Director of Graduate Studies will ascertain that this decision is a mutual commitment and that all appropriate faculty have participated in the interviewing process. The Director of Graduate Studies, having confirmed the research director's commitment to you, will place the handbook form in your departmental file and notify the faculty of your choice.
9.02 As a student who has not yet selected a research director, you should begin interviewing faculty members after faculty research presentations and select a research director by November 15th. Following faculty research presentations, each graduate student must interview at least three faculty members in their major. Students are encouraged to interview more faculty and are not restricted to a single area. Choice of an advisor from outside the department is not usually permitted. Approval would require a successful petition to the Petitions Committee.

The list of faculty who must be interviewed (chosen area) and who might be interviewed (other faculty to consider) in each area is as follows:

Analytical

Chosen area: Ferry, Hashemi, Myrick, Richardson, Shaw, and K. Shimizu.
Other faculty to consider: Students in analytical may want to talk with Berg, Chen, Lavigne, Vannucci, Vogt, H. Wang, zur Loye.

Biochemistry

Chosen area: Chruszcz, Lavigne, Li, C. Outten, W. Outten, Tang, Q. Wang.
Other faculty to consider: Students in biochemistry may want to talk with Hashemi, H. Wang.

Inorganic

Chosen area: Chen, Greytak, Myrick, Peryshkov, Shaw, Shustova, Stefik, Vannucci, Vogt, zur Loye.
Other faculty to consider: Students in inorganic may want to talk with C. Outten, W. Outten, L. Shimizu, Wiskur

Organic

Chosen area: Benicewicz, J. Lavigne, Li, K. Shimizu, L. Shimizu, Stefik, Tang, Q. Wang and Wiskur.
Other faculty to consider: Students in organic may want to talk with Peryshkov, Shustova, Vannucci.

Physical

Chosen area: Berg, Chen, Ferry, Garashchuk, T. Ge, Greytak, Myrick, Rassolov, Sutton, H. Wang, Vogt.
Other faculty to consider: Students in physical may want to talk with K. Shimizu, zur Loye, Chruszcz, Stefik.

9.03 INTERVIEW FORM

(A) Graduate Student Name: \qquad
Area(s) of Interest: \qquad
(B) Faculty

	Date of Interview	Initials
B.C. Benicewicz	-	-
M. Berg	-	
D.A. Chen	-	
M. Chruszcz	-	
J.L. Ferry	-	
S.V. Garashchuk	-	
T. Ge	-	
A.B. Greytak	-	
P. Hashemi	-	
J.J. Lavigne	-	
J. Li		
M.L. Myrick	-	
D. Peryshkov	-	
V. Rassolov	-	
C.E. Outten	-	
F.W. Outten	-	
S.D. Richardson	-	
T.J. Shaw	-	
K.D. Shimizu	-	
L.S. Shimizu	-	
N.B. Shustova	-	
M. Stefik	-	
C. Sutton	-	
C. Tang		
A.K. Vannucci		
T. Vogt		
H. Wang		
Q. Wang		
S. Wiskur		
H.-C. zur Loye		

9.04 Research Advisor Selection

If the graduate office has a valid copy of the interview form turned in on or before October 1 (March 1st, January entry), your choice of a research advisor or advisors can be submitted to the graduate office from October 1 to November 15th (March $1^{\text {st }}$ - May 1 ${ }^{\text {st }}$, January entry). Early selection requires approval from the Petitions Committee.
(A) Graduate Student Name: \qquad
Area(s) of Interest: \qquad
(B) My Choice of Research Advisor is: \qquad
My second choice of Research Advisor is: \qquad

9.05 Form for the RESEARCH PLAN and ORAL COMPREHENSIVE EXAMINATION.

This examination is required of all graduate students (section 4.10). The form on the next page should be printed and used as the PLAN title page.

Research Plan and Oral Comprehensive Exam

Name: \qquad

Title: \qquad
Submission date: \qquad

Advisor's signature (for submission): \qquad (acknowledges advisor(s) has seen the Plan)

Committee Members

Area/Chairperson: \qquad
SIGNATURES (AFTER DEFENSE)

Area member:

Dept outside of area member:
Outside of department member:
(Dept.) \qquad

Co-Advisor/other*: \qquad

The PLAN and ORAL COMPREHENSIVE EXAM was given on \qquad (date)

OUTCOME / Committee Decisions
A. Ph.D. level specific understanding of the background, goals and plan of the research. \qquad Pass \qquad Fail
B. Ph.D level research progress in the lab to date.
___ Pass \qquad Fail
C. Ph.D level general knowledge of the particular research field. \qquad Pass \qquad Fail

Ph.D. SUMMARY: \qquad Full Pass (Three Passes) \qquad Partial Pass (Two Passes) \qquad Switch to MS Track (<Two Passes)

MS SUMMARY: \qquad Pass at the MS level \qquad Terminate grad studies

If Partial Pass (PhD level), the failed component will be re-defended in semester four and the proposal postponed to semester five

If Full Pass (PhD level), Additional Decisions by the Committee
A. Proposal Timing: The Research Proposal should be defended in: \qquad Semester Four \qquad Semester Five
B. Proposal Scope (Elements Different from Research, see handbook): \qquad Two of Three \qquad
C. Research Advisor Involvement in developing the student's original idea into the submitted proposal: \qquad Not at All \qquad Minimal
\qquad Significant

9.06 Form for the PROPOSAL and WRITTEN COMPREHENSIVE EXAMINATION and Advisor Letter of Research Progress for ADMISSION TO Ph.D. CANDIDACY.

This examination is required of all Ph.D. graduate students (section 4.11). This form should be printed and used as the PROPOSAL title page. Successful completion of this requirement together with a letter of research progress (bottom of form) from the research advisor is needed for admission to Ph.D. candidacy.

Research Proposal and Written Comprehensive Exam

Name: \qquad
Title: \qquad

Submission date: \qquad
Date of Pre-Proposal Meeting: \qquad
Committee Members (print names)
Signatures (AFter defense)
Area/Chairperson: \qquad
\qquad
Area member: \qquad
\qquad
Dept outside of area member: \qquad
\qquad
Outside of department member: \qquad
\qquad
(Dept.) \qquad
Co-Advisor/other*:
The PROPOSAL and WRITTEN COMPREHENSIVE EXAM was given on \qquad (date)
A. Ph.D. level specific understanding of the background, goals and plan of proposed research. \qquad Pass \qquad Fail
B. Ph.D level general knowledge of the particular research field. \qquad Fail
C. Ph.D level research progress in the lab to date. \qquad Pass \qquad
Ph.D. SUMMARY: \qquad Pass \qquad Fail \qquad Switch to MS Track
MS SUMMARY: \qquad Pass the comprehensive exam for the MS \qquad Terminate grad studies.

Admission to Ph.D. Candidacy

If the vote of the committee is pass, this form may be used to provide the necessary recommendation from the Research Advisor to the Director of Graduate Studies regarding the student's progress in research towards the Ph.D. degree. Alternatively, this action can be done by a separate note from the advisor to the Director of Graduate Studies.
To: Director of Graduate Studies
From: Research Advisor of Above-Named Student
Subject: Admission to Ph.D. Candidacy
The above-named student is a member of my research group, is making adequate progress in research toward completion of the Ph.D. degree and therefore should be admitted to Ph.D. candidacy.

Advisor's signature: \qquad

9.07 M.S. Program of study

MS degree requirements:
Course work [normally 5 Ph.D. level courses] = 15 credits
Graded research [790 and 791] $=6$ credits
Seminar, 701 divisional seminar $=1$ credit
Research in Chemistry II [898, 6 required, more credits of 898 may be needed for total of 30 credit hours]*
MS qualifying exam [plan and oral comprehensive exam, passed at the M.S. or Ph.D. level]
Research, written up in Thesis [signed by the advisor(s) and a second reader]
*Credits beyond 30 hours (e.g. additional credits of 898 or 899) are not listed on the M.S. program of study. M.S. program of study listings are not usable on a Ph.D. program of study.
9.08 Form for completion of the M.S. program of study.

Please use the G-TSF form [Thesis Signature and Approval Form] This form is found at www.gradschool.sc.edu on the left of the page under "forms library."

9.09 Ph.D. Program of Study

A minimum of 60 credit hours (30 beyond the M.S. degree) of graduate study is required for the Ph.D. This form also documents Ph.D. degree residency. Ph.D. residency is registration as a full-time student in three successive semesters (academic year).

PhD degree requirements:
Course work [normally 5 Ph.D. level courses] = 15 credits
Graded research [790 and 791] = 6 credits
Seminar, 701 divisional seminar $=2$ credits
Research in Chemistry II [898, 25 credits]*
PhD Oral Comprehensive Exam [Research plan passed at the Ph.D. level]
PhD Written Comprehensive Exam [Independent Research proposal passed at the Ph.D. level]
Ph.D. Dissertation Prep [899, 12 credits] *
Research, written up in Dissertation [signed by the advisor(s) and doctoral committee]

Total $=60$ credits. Taking additional or less course work requires advisor and graduate director approval. T *Credits beyond 60 hours (e.g. additional credits of 898 or 899) are not listed on the PhD program of study.

9.10 Form for completion of the PhD program of study.

Please use the G-DSF form [Dissertation Signature and Approval Form] This form is found at www.gradschool.sc.edu on the left of the page under "forms library." This form is submitted to the graduate school after notification of Ph.D. candidacy has been received from the Graduate School.
9.11 Dissertation and thesis submission is now done exclusively on-line. Please go to www.gradschool.sc.edu and click on "Academics" then "Thesis and Dissertations".

For Departmental Clearance:
A Graduation Clearance Checklist can be found on the chemistry website, go to MyChem/Biochem on left bottom side of page, choose Current Students, click on Graduate Students, look under Current Student Forms.

An exit interview is required for final clearance. Forms for the interview are on the chemistry graduate student website. If the Director of Graduate Studies is not available for the interview, please see a member of the Admissions or Recruiting Committee.

10.00 Course Descriptions (CHEM prefix unless otherwise noted)

GRAD 701 Graduate Training Seminar. In accordance with American Chemical Society certification, GRAD 701 provides training for graduate students according to the Society's guidelines. These guidelines include a rigorous observation of good safety practices, effective mentoring in modern molecular science, professional ethics and creativity in problem solving.

701 Seminar. (fall or spring, limit of 2) Required of all graduate students.
711 Physical-Inorganic Chemistry. The use and interpretation of modern physical measurements of particular application to inorganic chemistry, including X-ray, ESR, magnetic measurements, Mossbauer spectra, ligand field theory, and reaction mechanisms.

712 The Chemistry of Transition Elements. The main part of the course will cover transition metal organometallic chemistry. The emphasis will be on bonding and reactivity of organometallic complexes. Coordination chemistry as viewed by a synthetic chemist, will also be covered. Mechanistic aspects of organometallic reactions will be covered as will the use of modern NMR methods to solve problems in organometallic chemistry. Important reactions catalyzed by transition metal complexes will be presented in detail.

713 The Chemistry of the Representative Elements. The structure, bonding and chemistry of the inorganic compounds of main group elements.

719 Special Topics in Inorganic Chemistry. Selected subjects from the current literature. Recent example: Bioinorganic Chemistry. The mechanisms and metal coordination structures of metalloenzymes. Solid State Materials Chemistry. The course will teach fundamental concepts of Solid State Chemistry and Materials Science. Molecular Catalysts. The course will study historically significant catalysts, electrocatalysis, and photocatalysis.

721 Electroanalytical Chemistry. Theory, application and interpretation of electroanalytical techniques including potentiometry and coulometry.

722 Spectrochemical Methods of Analysis. A comprehensive study of the theory, instrumentation, methodology, and analytical applications of modern atomic and quantitative molecular spectrometry.

723 Separation Methods in Analytical Chemistry. Theory and application of analytical separation techniques, especially gas and liquid chromatography.

729 Special Topics in Analytical Chemistry: Intro to Environmental Chemistry. Study of the chemical reactions and processes that affect the fate and transport of organic chemicals in the environment.

729 Special Topics in Analytical Chemistry. Aquatic Chemistry. Study of the chemical reactions and processes affecting the distribution of chemical species in natural systems.

729 Special Topics in Analytical Chemistry: Mass Spectrometry. This course will cover the theory and applications of mass spectrometry, including understanding how different types of mass spectrometers operate, how to determine what kind of mass spectrometry analysis should be used for a particular application, how to interpret mass spectra for unknown chemical identification, and how to use mass spectrometry for quantitative analysis. Environmental chemistry, forensic chemistry, organic chemistry, inorganic chemistry, polymer chemistry, and biochemistry applications will be discussed.

735 Structural Organic Chemistry. Basic concepts of structure, bonding, stereochemistry, and reaction mechanisms as applied to organic compounds and synthetic transformations.

736 Mechanistic and Synthetic Organic Chemistry. The development and application of chemical reactions for the synthesis of organic compounds.

739 Special Topics in Organic Chemistry. Selected subjects from the current literature. Recent examples: Introduction to Polymer Chemistry. A broad survey of the organic and kinetic aspects of polymerization, measurement of molecular weight and distribution, other characterization methods, chemical and physical properties and uses of polymers, and solution properties. Advances in Polymer Chemistry. This course will expose students to many aspects of the most interesting fields in polymer science, including living polymerization and controlled/living radical polymerization; polymer thermodynamics and Flory-Huggins theory; phase separation in bulk; self-assembly in thin films and solutions; many more additional topics.

742 Surface Science. The principles of surface processes - structure and electronic properties, adsorption and reactions, surface characterization using spectroscopy and microscopy.
743 Quantum Chemistry. The course is focused on the application of electronic structure methods to solve chemistry problems. Students will get familiar with modern electronic structure programs such as Spartan and Q-CHEM, and understand theoretical concepts on which the programs are based. Learning about the limitations and possibilities of the computational methods is a major goal of this course.
744 Statistical Mechanics. Calculations of the thermodynamic properties of chemical systems from molecular properties. Theory and applications.
745 Introductory Crystallography. Point groups, matrix representation and derivation of space groups, general and special positions, structure analysis, Patterson and electron density functions, refinement techniques.

747 Spectroscopy and Molecular Structure. Study of the rotational, vibrational, and electronic spectra of polyatomic molecules for the elucidation of molecular structures.

749 Special Topics in Physical Chemistry. Selected subjects from the current literature. Recent example: Advanced Computational Chemistry. This course is designed to familiarize students with theory and use of modern electronic structure codes, as well as to develop critical thinking and problem-solving skills and to improve computer literacy
751 Biosynthesis of Macromolecules. . A detailed consideration of the enzymological basis for the synthesis of DNA, RNA, and protein including mechanisms for the regulation of these processes. Focus will be on eukaryotic mechanisms though prokaryotic systems will be covered as necessary for background.
752 Regulation and Integration of Metabolism. Regulation of carbohydrate, lipid, amino acid and nucleic acid metabolism at the substrate, enzyme, organelle, cell, organ and body level and of enzyme activities and levels by metabolites and hormones.

753 Enzymology and Protein Chemistry. An analysis of the isolation, composition, structure, and function of enzymes emphasizing their kinetic, mechanistic, and regulatory features. Protein chemistry: amino acid and protein sequence analysis; chemical modification methodologies; analysis of higher order structures of proteins.

759 Special Topics in Biological Chemistry. Selected subjects from the current literature. Recent example: Protein Crystallography. An overview of different experimental and computational techniques used in protein crystallography.
790 Introduction to Research. A laboratory and introduction to modern research techniques. Six hours of laboratory per week and individual consultation with instructor. (third semester)

791 Introduction to Research. A continuation of Chemistry 790. Six hours of laboratory per week and individual consultation with instructor. (fourth semester)

898 Research in Chemistry II. Directed laboratory research and readings in chemistry.
899 Dissertation Preparation. Credits 1-12

The following specialized undergraduate courses are available for audits or M.S. degree credit only.
511 Advanced Inorganic Chemistry. The structure, bonding and reactivity of main group and transition metal inorganic molecules.

533 Intermediate Organic Chemistry. Mechanistic viewpoints with emphasis upon the chemistry of reactive intermediates.

550 Molecular Biochemistry. The chemistry and metabolism of biological compounds, biochemical thermodynamics, enzyme mechanisms and kinetics, nucleic acid biochemistry.

555/556 Biochemistry/Molecular Biology I and II. Essentials of modern biochemistry and molecular biology.
621 Advanced Analytical Chemistry. Acid-base behavior, complex formation, separations, data treatment, instrumental methods.

633 Synthesis of Polymeric Materials: Definitions, characterization, and applications of polymers in organic chemistry.

643 Advanced Physical Chemistry. Quantum chemistry, electronic structure, thermodynamics, statistical mechanics, the kinetic theory of gases.

11.0 Faculty Research Interests

BRIAN C. BENICEWICZ - Polymer-organic chemistry, new monomer and polymer synthesis, polymer nanocomposites, polymer membranes for fuel cells, electrically conducting polymers, liquid crystalline polymers, controlled radical polymerization.

MARK A. BERG - Physical chemistry. Ultrafast laser spectroscopy; dynamics of molecules in liquids, glasses, polymers, DNA, and other complex materials; development of new multiple-pulse spectroscopies, Theory of singlemolecule spectroscopy.

DONNA A. CHEN - Physical chemistry. Reactions at surfaces, scanning probe microscopy, chemical analysis and characterization of surfaces, chemistry of metal nanoparticles.

MAKS CHRUSZCZ - Biochemistry. Structural Biology, allergy \& asthma, immunology, plant-pest interactions
JOHN L. FERRY - Environmental chemistry. Fate and transport of organic chemicals in the environment, photochemically driven oxidation, photocatalysis, trace organic analysis, phytoremediation, multivariate modeling.

SONYA V. GARASHCHUK - Theoretical and computational chemistry; quantum dynamics methods, nuclear quantum effects on reactivity and properties of molecular systems; modeling of advanced materials

TING GE - Physical Chemistry, Polymer Physics, Molecular Simulations of Polymer and Soft Matter, Scaling Theory, Polymer Mechanics, Polymer Rheology, Polymer Nanocomposite

ANDREW B. GREYTAK - Physical chemistry. Physical and materials chemistry at the liquid-solid interfaces of semiconductors. Energy conversion, energy storage, bioimaging, properties of semiconductor nanostructures (colloidal nanocrystals, catalytically-synthesized nanowires, and heterostructures) modified by controlling chemistry at their surfaces.

PARRY HASHEMI - Environmental chemistry. Electrochemistry, fast scan cyclic voltammetry, carbon fiber microelectrodes, neurotransmitter detection, in vivo analysis, real-time trace metal analysis, speciation studies, thermodynamic equilibrium, solution geochemistry.

JOHN J. LAVIGNE - Organic, supramolecular chemistry. Molecular recognition, supramolecular chemistry, sensors, materials, bio-organic, physical organic.

JIE LI - Biochemistry. Microbial genome mining and drug discovery using synthetic biology and metabolomics; natural products (especially antibiotics) biosynthesis and bioengineering.

MICKY L. MYRICK - Physical and analytical chemistry. Spectroscopy (IR, Raman, Fluorescence, UV-Vis), instrumentation and data analysis applied to biological oceanography and forensic science.

CARYN E. OUTTEN - Biochemistry. Cellular and molecular mechanisms of redox homeostasis; mitochondrial and cytosolic anti-oxidant defense systems; intracellular sulfur chemistry; molecular genetic and biochemical studies of oxidative stress resistance in yeast.
F. WAYNE OUTTEN - Biochemistry. Microbial metal metabolism, bio-inorganic chemistry, microbial physiology, and microbial genetics; biochemical mechanisms of Fe-S cluster assembly; characterization of
transition metal acquisition, trafficking, and storage systems during environmental stress; metal homeostasis during biofilm formation in micro-organisms.

DMITRY PERYSHKOV - Inorganic chemistry. Synthesis of molecular catalysts for activation of important substrates such as dihydrogen, carbon dioxide, alkenes, etc.

VITALY A. RASSOLOV - Theoretical and physical Chemistry. Quantum chemistry, hyperfine interactions, use of linear operators to describe electron correlation effects in molecules.

SUSAN D. RICHARDSON - Analytical/Environmental chemistry. Development of new mass spectrometry methods for trace environmental contaminants and the discovery of new contaminants; formation of drinking water and wastewater disinfection by-products (DBPs); fate of chemicals in water treatment; linking chemistry and toxicology.

TIM J. SHAW - Environmental/analytical chemistry. Trace element geochemistry, environmental analytical chemistry. Techniques development for trace elements of both anthropogenic and natural origin in the environment. Geochemical cycling of trace elements in the environment.

KEN D. SHIMIZU - Organic chemistry. Organic, polymer, materials, supramolecular, and physical organic chemistries.

LINDA S. SHIMIZU - Organic chemistry. Organic, supramolecular, materials, physical organic, polymer, and biochemistry.

NATALIA B. SHUSTOVA - Inorganic material chemistry. Metal-organic and organic materials for applications in energy conversion, heterogeneous catalysis, nuclear waste reprocessing, sensing, and bioengineering.

MORGAN STEFIK - Polymer and materials chemistry. Functional nanostructures, energy devices, block copolymers, self-assembly, nanoparticles, atomic layer deposition, (photo)electrochemistry.

CHRIS A. SUTTON - Theoretical/computational chemistry and materials science, density functional theory, highthroughput computational screening of new materials, supervised machine learning, error and uncertainty quantification of machine learning models.

CHUANBING TANG - Organic chemistry. Organic, polymer, materials, nanoscience and nanotechnology. Multifunctional polymeric materials and macromolecular self assembly.

AARON VANNUCCI - Inorganic chemistry. Electrocatalysis, inorganic chemistry, organometallics, small molecule transformation.

TOM VOGT - Inorganic chemistry. Crystallography; general structural chemistry; chemical synthesis of functional metal oxides; bimetallic nanoparticles as well as x-rays and neutrons diffraction techniques and instrumentation (i.e high pressure diffraction, structures of disordered materials in particular nanomaterials).

HUI WANG - Physical chemistry. Biophysical chemistry; Single-molecule spectroscopies and microscopies; Single molecule manipulation; Nanostructure fabrication; Nanoscale self-assembly; nanophotonics; Single particle spectroscopies; Plasmon-enhanced spectroscopies.

QIAN WANG - Organic chemistry. Organic synthesis; bioconjugation chemistry; biomaterials chemistry, and developing new bioanalytical methods for proteomics and metabolomics applications.

SHERYL L. WISKUR - Organic Chemistry. Synthetic methodology, organocatalysis, mechanistic studies, intermolecular interaction studies, physical organic, sensors.

HANS-CONRAD ZUR LOYE Inorganic materials chemistry. Synthesis of novel solid-state materials; crystal growth of oxides, fluorides and chalcogenides; investigation of optical and magnetic properties; investigation of actinide containing materials.

12.00 Summary of the Ph.D. Degree Program

- Orientation: Safety, OSHA and Chemical Hygiene training; Degree regulations; Teaching (recitation and laboratory) instruction, Advisement, Registration, ACS Qualifying or Placement exams.
- Year 1: Five "700 (Ph.D.) level courses", 3 in the area of research interest -- 2 outside the area (Option: 4 and 1); Attend faculty research seminars, interview faculty and choose research advisor; Start research; GPA of at least 3.0; Select Ph.D. Committee; Qualify/show advanced knowledge in 2 areas (paths to qualification: Pass ACS area tests or get a B or better in designated graduate core courses); First divisional literature seminar (1st or 2nd year).
- Years 2 \& 3: Research; Research Plan and Oral Comprehensive exam (Fall) - Summary of the dissertation research plan and progress to date; Research Proposal and Written Comprehensive exam (Spring of Year 2 or Fall of Year 3) - Original research idea; First divisional literature seminar (1st or 2nd year); Second divisional literature seminar (2nd or 3rd year); Admission to Ph.D. candidacy (after completion of the above in combination with a letter of research progress from the research advisor).
- Years 4 \& 5: Complete research; Write, present (dissertation seminar) and defend Dissertation; Graduation; Exit Interview.

Chemistry \& Biochemistry Graduate Curriculum Map (revised June 2, 2021)
Credits needed for graduation: PhD: 60 credits ($\mathbf{3 0}$ credits if already have an MS); MS: 30 credits
This is a guideline; actual registration should be decided by advisor and student. Note: To finish in less than four years, this schedule must be accelerated.
Start Term: Fall (If starting in the Spring, use $1^{1 \text { t }}$ Semester as your starting point)

FALL Courses		SPRING Courses		SUMMER Courses		Requirements
Semester 1	Credits	Semester 2	Credits	Summer Semester I	Credits	- Join a research group by the end of 1 st semester - Achieve a DGPR of 3.0 by end of $2^{\text {nd }}$ Semester - Qualify in two areas by the end of $2^{\text {nd }}$ Semester - Attendance of required faculty research seminars - Submit Committee Appointment Request form to Graduate School by the end of May (G-DCA) (December for January entry) - CHEM 701 should be taken either Summer I or Semester 3 or 4 . When CHEM 701 is listed, but you are not taking CHEM 701, take the higher number of CHEM 898 credits suggested.
CHEM 7\#\#	3	CHEM 7 7\#\#	3	CHEM 898	2 or 3	
CHEM 7\#\#	3	CHEM 7\#\#	3	CHEM 701*	0 or 1	
CHEM 7\#\#	3					
GRAD 701	0			-If you gave a seminar Semester 2, then register for CHEM 701 here	Total 3	
	Total 9		Total 6	Cumulative Credits after Year 1	18	

Year 2

FALL Courses		SPRING Courses		SUMMER Courses		Requirements
Semester 3	Credits	Semester 4	Credits	Summer Semester II	Credits	Semester 3 - successfully defend Research Plan - Semester 4 or 5 - successfully defend Research Proposal - First seminar (CHEM 701) needs to be completed before the end of Semester 4 Doctoral Program of Study (DPOS) should be filled out after passing the Plan and Proposal plus recommendation of advisor on research progress (end of Semester 4 or 5) MS degree is the same through semester 4, except the Research Proposal is not needed. Students take CHEM 898 s until done (need 6 credits for MS). Terminal MS candidates can apply for Z-status when nearing 30 credits. MS requires a thesis with two readers.
CHEM 790	3	CHEM 791	3	CHEM 898	3	
CHEM 898	2 or 3	CHEM 898	2 or 3			
CHEM 701*	0 or 1	CHEM 701*	0 or 1			
- Only register for OHEM 701 if you are giving your $1^{\text {rt }}$ seminar here		-Only register for CHEM 701 If you are giving your 1^{11} seminar here			Total 3	
	Total 6		Total 6	Cumulative Credits after Year 2	33	

Year 3

FALL Courses		SPRING Courses		SUMMER Courses		Requirements
Semester 5	Credits	Semester 6	Credits	Summer Semester III	Credits	- Semester 4 or 5 - successfully defend Research Proposal - Doctoral Program of Study (DPOS) should be filled out after passing the Plan and Proposal plus recommendation of advisor on research progress (end of Semester 4 or 5) - Second seminar (CHEM 701) needs to be completed in Semester 5 or 6 . When CHEM 701 is listed, but you are not taking CHEM 701, take the higher number of CHEM 898 credits suggested.
CHEM 898	5 or 6	CHEM 898	5 or 6	CHEM 898	3	
CHEM 701*	0 or 1	CHEM 701*	0 or 1			
"Take CHEM 701 here if giving seminar 2 here		- If tock CHEM 701 Semester 5, then don't take here			Total 3	
	Total 6		Total 6	Cumulative Credits after Year 3	48	

Year 4

FALL Courses		SPRING Courses		SUMMER Courses		Requirements
Semester 7	Credits	Semester 8	Credits	Summer Semester IV	Credits	- Students need 12 credits of CHEM 899 to graduate with a PhD. Make sure you switch over Fall of year 4 (Semester 7) - Z status can be applied for after 54 credits (End of Semester 7). Students should be on Z status from this point until graduation. - Dissertation defense
CHEM 899	6	CHEM 899	5 or 6	CHEM 899	1	
	Total 6		Total varies	Cumulative Credits after Year 4	60	

[^0]Faculty Research Presentations 2021 (tentative)
NOTE: There are two different start times (4:25 and 4:40) depending on the day to accommodate th teaching schedule of the first years. Please check times daily.

Mon, Aug 16	4:40-5 pm	5:00-5:20 pm	5:20-5:40 pm
STB 417	Wiskur, intro to Faculty Research Presentations	Tang	L. Shimizu
Tues, Aug 17	4:40-5 pm	5:00-5:20 pm	5:20-5:40 pm
STB 417	Rassolov	Garashchuk	Chruszcz
Wed, Aug 18	4:40-5 pm	5:00-5:20 pm	5:20-5:40 pm
STB 417	K. Shimizu	Greytak	Peryshkov
Thurs, Aug 19	4:25-4:45 pm	4:45-5:05 pm	5:05-5:25 pm
	Shustova	Jie Li	Richardson
Fri, Aug 20	No Presentations		
Mon, Aug 23	4:40-5:00 pm	5:00-5:20 pm	5:20-5:40 pm
	Lavigne	Vogt	H. Wang
Tues, Aug 24	4:25-4:45 pm	4:45-5:05 pm	5:05-5:25 pm
	C Outten	Stefik	Myrick
Wed, Aug 25	4:40-5:00 pm	5:00-5:20 pm	5:20-5:40 pm
	W. Outten	Vannucci	zur Loye
Thurs, Aug 26	4:25-4:45 pm	4:45-5:05 pm	5:05-5:25 pm
	Wiskur	Ting Ge	Q. Wang
Fri, Aug 27	No Presentations		
Mon, Aug 30	4:40-5:00 pm	5:00-5:20 pm	5:20-5:40 pm
	Ferry	Sutton	Chen
Tues, Aug 31	4:25-4:45 pm	4:45-5:05 pm	5:05-5:25 pm
	Shaw	Berg	
Wed, Sept 1	4:40-5:00 pm	5:00-5:20 pm	5:20-5:40 pm
	Make-up slot	Make-up slot	Make-up slot
Thurs, Sept 2	4:25-4:45 pm	4:45-5:05 pm	5:05-5:25 pm
	Make-up slot	Make-up slot	Make-up slot
Fri, Sept 3	No Presentations		

Presentations in GSRC 101 (other than the first three days in STB 417)
Attendance is mandatory to partially fulfill GRAD 701 requirements.
8-5-2021

[^0]: If registering beyond 4 years, continue on Z-status registering for 1 credit of CHEM 899 per semester until done.

