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 A network of N nodes can be exactly described by a matrix of 
N2–N non-negative off-diagonal values representing the connection 
weights among the N nodes.  When a network is large and changing 
every second such as the Internet, then the resulting system has tens of 
millions of values every second. We have found a method for reducing 
this vast data into a few (2N and fewer) representative values (network 
entropy spectral functions, or metrics) in order to track the changing 
topology for attacks, failures and malicious processes.      
Our previous work showed that the general linear group, of 
transformations that are continuously connected to the identity in n 
dimensions GL(n,R), can be decomposed into two Lie groups1: (1) an 
n(n-1)-dimensional Markov-type Lie group M(n) that is defined by 
preserving the sum of the components of a vector, and (2) the n-
dimensional Abelian Lie group, A(n), of scaling transformations of the 
coordinates. With the restriction of the Markov-type Lie algebra 
parameters to non-negative values, one obtains exactly all Markov 
transformations in n dimensions that are continuously connected to the 
identity.  More precisely, this system is now a Markov Monoid  (MM) 
as it is a group without an inverse.  
 
In our current work we show that every network, as defined by its 
connection matrix Cij, is in one to one correspondence to a single 
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element of the MM Lie algebra of the same dimensionality. It follows 
that any network matrix, C, is the generator of a continuous Markov 
transformation that can be interpreted as producing an irreversible flow 
of a conserved substance among the nodes of the corresponding 
network. The exponentiation of the MM algebra provides a continuous 
transformation with rows and columns that constitute normed 
probability distributions that encapsulate the topology of the network 
in all orders of expansion.  This allows Shannon and generalized 
(Renyi) entropy functions to be defined on the column and row 
probability distributions. These (2N) generalized entropies (along with 
derivatives and functions of these entropies) for these Markov 
transformations become metrics for the topology of the corresponding 
network encapsulating all of the network topology in a more 
hierarchical way. Thus we have tightly connected the fields of Lie 
groups and algebras, Markov transformations, conserved flows, 
diffusion transformations, and generalized entropies, on the one hand, 
to network theory and network topology. We are specifically interested 
in applying these generalized entropies as metrics for the tracking of 
network topological changes such as one would expect under attacks 
and intrusions on internets. We will show our experimental results of 
monitoring these entropy spectral distributions using two internet 
tracking applications.  
 
1   Introduction 
  
There is a broad spectrum of mathematical problems that involve the 
general theory of networks and the associated classification, 
optimization, and potentially even their dynamical evolution.  By a 
network we mean a set of n nodes (points), some pairs of which are 
connected with a representative non-negative weight or strength of 
connection.  Such a network can be represented by a connection (or 
connectivity, or adjancy) matrix Cij whose off-diagonal elements give 
the non-negative ‘strength’ of the connection between nodes i and j in 
the network. Often that ‘strength’ or ‘weight’ is as simple as a ‘1’ for a 
connection and a ‘0’ otherwise.  A network can be ‘undirected’ or 
‘directed’ depending upon whether Cij is symmetric or not thus 
indicating respectively a symmetric or asymmetrical connection 
between i and j.  There may or may not exist a ‘metric distance’ 
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between the nodes or, equivalently, positions for the points in a metric 
space of some dimensionality, such as airports for airline networks, or 
substations for power or utility distribution networks.  It is well known 
that the classification of different network topologies cannot be 
accomplished with just the eigenvalue spectra of the connectivity 
matrix as there are topologically different networks with as few as five 
nodes that have the same eigenvalue spectra.  One root of the network 
problem is that although the network is exactly defined by the C 
matrix, there are n! different C matrices that correspond to the same 
topology because different C matrices result from different nodal 
numbering orders. Most network problems become computationally 
intractable for more than a few hundred nodes. The essential point here 
is that the n(n-1) off-diagonal non-negative values of C uniquely define 
a network. The n column values are arbitrary at this point and are 
undefined.   
 
We are interested in seeking useful metrics (functions of the C matrix) 
for the description of the topology of large networks such as sub-nets 
of the internet which might have from a hundred to a million nodes, 
and thus perhaps a trillion connection matrix values. To be useful, the 
metrics must be (a) rapidly computable (as compared to eigenvalue 
computations), (b) intuitively meaningful, (c) should holistically 
summarize the underlying topology with a few variables,  (d) ideally 
would offer meaningful hierarchical expansions providing increasing 
levels of topological detail and (e) these metrics should be invariant 
under the permutation group on node numbering and thus reflect the 
intrinsic topology. We are specifically interested in the information 
flows of which originating node sends data to which destination node; 
and we are not initially interested in the underlying physical 
connectivity topology itself nor are we interested in the specific path 
which the information traverses nor associated distance metrics.  
Internet transmissions are extremely dynamic and thus to achieve some 
form of continuity, we envision constructing the C matrix using a 
summation of information transfers, or weights, over some time 
window t-δ/2 to  t+δ/2, surrounding a time t as C(t, δ) thus representing 
the time evolution of the connection matrix.  
 
Given the number of connections, this problem resembles the 
representation of a physical gas in terms of thermodynamical variables 
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(such as temperature, volume, pressure, heat, and entropy).  Generally, 
in such internet environments there is no meaningful location or 
position metric that gives insight into the topology and thus distance is 
not usefully defined.  As such pressure and volume, do not have a clear 
meaning without a distance function. There is no general conserved 
quantity such as energy, and thus heat and temperature do not offer 
clear meanings.  However, we will suggest below that the concept of  
entropy can be well defined and that it can be used to summarize the 
order and disorder in the underlying topological structure.  
  
Initially, how to define entropy on the connection matrix is not clear 
since both Shannon and Renyi entropies are defined as the log of the 
sum of the powers of the components of a vector, xi, representing 
probabilities: S = c log2 (b(Σxi

a) ) where Σ xi = 1 and where a, b, and c 
are constants.  As such these entropies represent the disorder in the 
underlying probability distribution. The disorder is a maximum with an 
even probability distribution and is a minimum when all the probability 
is in one cell with others having a value of zero.  But the connection 
matrix columns or rows cannot be used as probability distributions 
since the diagonal of C is totally arbitrary. Even if we make some 
arbitrary choice of the diagonal values of C and normalize the columns, 
it is not clear what underlying topological ‘disorder’ we are measuring.  
Naturally one can take any set of non-negative numbers and normalize 
them to unity and compute the entropy of the distribution. But without 
an underlying mathematical and intuitive foundation for the meaning 
of this distribution it would follow that the resulting entropy 
calculation is likewise ambiguous.  In this work, we utilize our past 
work on the decomposition of the general linear group in order to gain 
insight into how one might define these entropy metrics in useful ways 
that satisfy the requirements a-e above.      
 
Additionally we will utilize definitions of entropy (or equivalently 
information as negative entropy).    The original argument by Shannon 
was that if the information of two independent systems is to be 
additive, and if the information is a function of the probability 
distribution, and since probabilities of independent systems is 
multiplicative, then it follows that information (or entropy) must be the 
log of a power of the probability.  More precisely beginning with 
Shannon one has I = -log2(P) so that the probability P of a simple two 
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state system (‘1’ or ‘0’) is ½ for each thus giving I=1 bit of 
information. More generally with the work of Kolmogorov and Renyi’ 
one can consider a probability distribution xi among n cells (i=1,2, … 
n) with Σxi =1 as I = a log2(n Σxi

b).  In our work below, one can take 
any of the generalized Renyi’ entropies but we will choose a= 1 and 
b=2 giving I = log2(n Σxi

2). This can be shown to smoothly generalize 
the Shannon entropy as a boundary condition for two states. For 
example when x1= 1 and x0 = 0 (or conversely) then n=2 and I = 1 for 
maximum information of one bit thus agreeing with Shannon.  Then 
when there is equal probability and thus no information one has x1 =  x0 
= ½ thus I = 0.  When a probability distribution is flat, the information 
function above becomes a minimum but when it peaks then the square 
of the probability becomes much larger and the information increases 
as the log of the sum of the squares of the values.  In the following we 
will use information and entropy interchangeably as one is the negative 
of the other.   
 
2   Background on Markov Lie Groups and Monoids 
 
We had previously shown1 that the transformations in the general 
linear group in n dimensions, that are continuously connected to the 
identity, can be decomposed into two Lie groups: (1) an n(n-1) 
dimensional ‘Markov type’ Lie group that is defined by preserving the 
sum of the components of a vector, and (2) the n dimensional Abelian 
Lie group, A(n), of scaling transformations of the coordinates.   To 
construct the Markov type Lie group, consider the k,l matrix element 
of a matrix  Lij  as a basis for n x n matrices, with off-diagonal 
elements, as  Lij

kl  = δi
k δj

l - δj
k δj

l with i =/= j.  Thus the ij basis matrix 
has a ‘1’ in position ij with a ‘-1’ in position jj on the diagonal. These 
n(n-1) matrices form a basis for the Lie algebra of all transformations 
that preserve the sum of the components of vector.  With this particular 
choice of basis, we then showed that by restricting the parameter space 
to non-negative real values, λij >=0, one obtains exactly all Markov 
transformations in n dimensions that were continuously connected to 
the identity as M = exp (s λij Lij) where we summarize over repeated 
indices and where s is a real parameter separated from λij to 
parameterize the continuous evolution of the transformation. In other 
words λij Lij consists of non-negative coefficients in a linear 
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combination of Lij matrics.      This non-negativity restriction on the 
parameter space removed the group inverses and resulted in a 
continuous Markov monoid, MM(n), a group without an inverse, in n 
dimensions. The basis elements for the MM algebra is a complete basis 
for n x n matrices that are defined by their off-diagonal terms.   
 
The n dimensional Abelian scaling Lie algebra can be defined by Lii

kl  
= δi

k δi
l thus consisting of a ‘1’ on the i,i diagonal position.  When 

exponentiated,  A(s)  = exp (s λii Lii),  this simply multiplies that 
coordinate by es giving a scaling transformation. The Lie algebra that 
results from the sum of the Abelian and Markov Lie generators is 
sufficient to generate the entire general linear group that is connected 
to the identity.   
 
3   Connecting Markov Monoids to Network Metrics 
 
We can begin with the simple observation that (1) since the non-
negative off diagonal elements of an n x n matrix exactly define a 
network (via C) and its topology with that node numbering, and (2) 
since a Markov monoid basis is complete in spanning all off-diagonal n 
x n  matrices, then it follows that such networks are in one to one 
correspondence with the elements of the Markov monoids. The Lie 
Markov matrix that results is exactly the C matrix where the diagonal 
elements are set equal to the negative of the sum of all other elements 
in that column. Thus each such altered connection matrix is the 
infinitesimal generator of a continuous Markov transformation and 
conversely.   This observation connects networks and their topology 
with the Lie groups and algebras and Markov transformations in a 
unique way. Since the Markov generators must have the diagonal 
elements set to the negative of the sum of the other elements in that 
column, this requirement fixes the otherwise arbitrary diagonal of the 
connection matrix to that value also (sometimes referred to as the 
Lagrangian) 
   
It now follows that this diagonal setting of C generates a Markov 
transformation by M= eλC .  One recalls that the action of a Markov 
matrix on a vector of probabilities (an n-dimensional set of non-
negative real values whose sum is unity), will map that vector again 

 6



into such a vector (non-negative values with unit sum). The next 
observation is that by taking λ as infinitesimal, than one can write M = 
I + λC  by ignoring higher order infinitesimals.   Here one sees that the 
value or weight of the connection matrix between two nodes, gives the 
M matrix element as the relative infinitesimal transition rate between 
those two components of the vector. Thus it follows that given a 
probability distribution xi distributed over the n nodes of a network, 
then M gives the Markov transition (flow) rates of each probability 
from one node to another.  Thus it follows that the connection matrix 
gives the infinitesimal transition rates between nodes with the weight 
reflecting that exact topology.   
 
Specifically, if  the hypothetical initial probability vector is xi = 
(1,0,0,0…0) then the vector at a time dt later will be equal to the first 
column of the M matrix, M = I + dt C.    Thus the first column of M is 
the probability distribution after an infinitesimal time of that part of the 
probability that began on node 1 and likewise for all other nodes thus 
giving a probability interpretation to each of the columns of M as the 
transfer to that node.  Thus each column of M can be treated as a 
probability distribution associated with the topology connected to that 
associated node and will support an unambiguous definition of an 
associated entropy function that reflects the inherent disorder (or order) 
after a flow dt.  Thus the columns of M support a meaningful definition 
of Renyi entropies which in turn reflect the Markov transformation 
towards disorder of the topological flow to the node for that column.  
Thus this Renyi entropy on this column can be said to summarize the 
disorder of the topology of the connections to that node to that order of 
the expansion.  It follows that the spectra of all nodes reflects in some 
sense the disorder of the entire network.  We recall that the numbering 
of the nodes is arbitrary and thus we can now renumber the nodes 
without affecting the underlying topology  We thus sort the N values of 
the nodal entropy  in descending order which gives a spectral curve 
independent of nodal ordering and thus independent of the 
permutations on nodal numbering (except possibly for some 
degeneracy which we address below).  That spectral curve can be 
summarized by the total value for the entropy of all columns (since 
entropy is additive and the column values are totally independent 
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If the connection matrix is symmetric then the graph (network) is said 
to be undirected, but if there is some asymmetry, then the graph is at 
least partially directed where the flow from i to j is less or greater than 
the converse flow.  If the connection matrix is not symmetrized then 
one can capture this asymmetry by resetting the diagonal values of C to 
be equal to the negative of all other row values in that row.  Then upon 
expansion of M = I + λC,  the rows are automatically normalized 
probabilities that in turn support entropy functions for each row.  These 
row entropy values form a spectrum which could be sorted by the same 
nodal values (in order) that is used to order the column values.  This 
will result in a different spectral curve that is not necessarily in non-
decreasing order for the row entropies.  One also can compute the total 
row entropy as we have done for columns.  If two columns have the 
same entropy then one can remove some of the numbering degeneracy 
by using the values of the associated row entropies by using a rank 
ordering as we did with column values.    
 
4  Practical and Computational Considerations 
 
The work here has both purely mathematical and practical aspects 
pertaining to applications to real networks.  If one only has a single C 
matrix and time is not involved then the following discussion on time 
windows does not apply.   It will then be assumed that one has a data 
flow with records with the fields: (a) network type, (b) time, (c) node i, 
(d) node j, (e) weight.   These might be SNORT captures of internet 
traffic between IP addresses, financial transitions between bank 
accounts, power transfers among electrical grid substations, or 
passengers flown between two airports. The C(t,δ)  matrix is 
constructed by summing the weights into the appropriate cells 
(renumbered with integers as i, j = 1, 2, …N) during a time period 
δ centered about time t.  It is obvious that one must have a period  δ 
which allows a ‘representative’ accumulation of values for the 
disagrigation size N.  If C is too sparse, then one must choose longer 
time windows or one must collapse the matrix nodes by some natural 
methodology such as IP sectors, or flights between states and not 
airports. In some cases one may wish to combine several network types 
using a linear combination of the contributions determined by the first 
parameter. In some considerations, one might wish to modify the 
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weight of the contribution such as using the log of the financial 
transfer.   The software we have built contains loaders with such 
adjustable parameters.  The result of this process is a C(t) with no 
diagonal terms.  We then put this in the form of a Lie Monoid 
generator by setting the diagonal terms equal to the negative of the 
other terms in that column (and later row). We then find it useful to 
normalize the entire matrix to have a fixed trace of -1 or –N as this 
allows better control over the subsequent expansion into the Markov 
matrix. 
 
The expansion M(t) = eλC(t) although mathematically guaranteed to 
converge, have non-negative terms and generally be Markovian, must 
be executed with a small number of terms if C is large.  The parameter 
λ gives a weighting of the higher terms in the expansion where one 
might choose to sum up through ‘k’ terms.  The number of such terms 
is the extent to which M ‘feels out’ the connections to the connections 
etc. as weighted by the parameter λ. These two must work hand in 
hand since it is meaningless to have a very large λ while only 
expanding to the first order in C. Conversely, it is meaningless to 
expand to many powers, k, of C while using a nearly infinitesimal 
value of λ since higher orders of λ  will make such higher powers of C 
vanish.  The next consideration is that although the M matrix has only 
positive terms when the full expansion is executed, in practice one can 
choose k and λ  which, due to the negative diagonals of C, can give 
negative terms for truncated expansions.  Thus the software must have 
error checks to make the appropriate corrections in the expansion.  
 
Now having the M(t) matrix for that instant, one computes the Ej

c 

=log2(N(ΣiMij
2)) ie the log of the sums of squares of each column to get 

the entropy (information) for that column representing the transfers 
into that node by the Markov matrix. The spectra is computed by 
sorting these by value while keeping a lookup table for which node 
goes to which original position.  A similar computation is done to 
compute the entropies of the rows Ej

r where the same sort order is used 
except for removing potential degeneracies (where the column values 
are the same and thus not distinguished by order). These two spectral 
curves, or histograms, are computed for each successive time window 
and overlaid graphically to compare the row and column entropy 
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profiles over time.  A critical point is to realize that it does not matter 
that the nodes are renumbered with each window, but rather we are 
interested in whether the profile of order and disorder of the underlying 
topology is ‘about the same’.  Naturally some profiles for networks 
change from late Sunday night to rush hours at 9AM Monday. 
Likewise, power grids depend upon the temperature as well as the time 
of day.  Thus for a given time of day, day of week, and if necessary for 
that network, weather pattern in temperature, one must learn the profile 
of what is normal (i.e. profile one standard deviation) for the network 
under consideration and then to overlay the instantaneous network 
spectra on this and graphically display it. One can sum all of the row 
entropies into a single value Er(t) and likewise for the columns.  Then 
one might sum the squares of deviations from normal to obtain a single 
value representing the total deviation of column entropies from normal 
(and likewise for the rows).  Our software performs these computations 
and displays along with the overall network ‘amplitude’ which is the 
trace of the original C matrix.  This gives us three curves that we can 
monitor over time as well as watching the current row and column 
entropy spectra displayed overlaid upon the normal distribution for 
those circumstances.  One must then be able to identify where 
anomalies are occurring in the network for example by clicking on the 
associated spectral curve anomaly area.  The system then finds the 
node identification in the lookup table thus identifying the anomalous 
nodes and subnets.  We will present results of our monitoring internet 
networks at two universities.              

 
5   Interpretation and Discussion 

 
We emphasize again that the flows that are modeled by M(t) = eλC have 
nothing at all to do with the dynamical evolution of the network.  
These metrics are used to monitor the network state and dynamical 
behavior but not to predict it.  Rather the evolution generated by M(λ) 
is an imaginary dynamical flow that would occur if a conserved fluid 
(probability, money, population …) were to move among the nodes at 
the rates indicated by the C matrix of connected weights.   Thus the 
value of M(λ) is that the associated entropies can be used to summarize 
the order or disorder of the incoming or outgoing topological 
connectivity of the (static) network at one given instant of time. The 
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philosophy here is that the entropy values will capture the most 
essential aspects of the structure of the column and row probability 
distributions, and thus the topology, to that level of expansion of the 
parameter λ. By expanding to higher powers of C, with larger values of 
λ, the entropy metrics capture increasing levels of the connections to 
the connections etc.   Also by utilizing other Renyi’ entropies, one 
obtains other spectra and values that measure other ‘moments’ of the 
probability distributions.  
 
One can also consider alternative diagonal values of the C matrix by 
adding the Abelian scaling group transformation generators to the 
diagonal values of C.  These transformations destroy the conservation 
of the modeled flow (such as probability) and thus the resulting 
transformation is no long Markovian. These altered diagonal 
transformations are equivalent to adding sources and sinks of the 
modeled fluid at the associated nodes.  It is straight forward to prove 
that the entropy value E(t) =  log2(N<x(t)|x(t)>)  when taken to only the 
third level of expansion, can, with its partial derivatives with respect to 
such sources and sinks at the node ‘j’, for different initial conditions 
for the flow |x(0)> at node ‘i’, formally obtain the entire C matrix thus 
showing that the entire topology of the network is contained in the 
entropy functions and its derivatives.        
 
When C is diagonalized, with the values leading to the Markov 
transformations, or to the more general values of the diagonals of the 
last paragraph, one automatically gets a diagonalization of the M 
matrix.  The interpretation of the eigenvectors is now totally obvious as 
those linear combinations of nodal flows that give a single eigenvalue 
(decrease when the transformation is Markov) of the associated 
probability, for that eigenvector.  This follows from the fact that all 
Markov eigenvalues are negative except the one value for equilibrium 
which has eigenvalue unity for equilibrium.  That means that each of 
these negative eigenvalues of C reflect the decreasing exponential rates 
of decrease of the associated eigenvector as the system approaches 
equilibrium as λ approaches infinity in M= eλC .  This insight allows us 
to see that all of the Renyi entropy values are increasing as the system 
approaches equilibrium, which is normally the state of all nodes having 
the same value of this hypothetical probability. The use here of this 
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‘artificial flow of probability under M’ provides us with more than just 
a method of encapsulating the topology with generalized entropy 
values, it also gives an intuitive model for the eigenvectors and 
eigenvalues for C and sheds light on the graph isomerism problem 
(different topologies having the same eigenvalue spectra). Of course it 
does not resolve any graph isomerism issue associated with degeneracy 
of multiple topologies for a single eigenvalue spectra without altering 
the C matrix by the Abelian transformations.              
 
Based upon the arguments above, we suggest that for real networks 
such as the internet, that the appropriate connection matrix be formed, 
from source and destination information transfers, where both 
asymmetry and levels of connection are to be maintained in the C(t) 
matrix values during that window of time about that time instant.  
Specifically, this means that if a connection is made multiple times in 
that time interval, then that C element should reflect the appropriate 
weight of connectivity as this adds substantial value to the entropy 
functions.  We then suggest that at each instant, the column and row 
entropy spectra be computed along with the total row and column 
entropy and that this be done for lower order Renyi entropies as well as 
lower order values in the expansion of the Markov parameter λ that 
includes higher order connectivity of the topology.  We are currently 
performing tests to see how effective these entropy metrics are in 
detecting abnormal changes in topologies that could be associated with 
attacks, intrusions, malicious processes, and system failures. The 
patterns (from our simulations) of specific topologies such as rings, 
trees, clusters, and other structures have interesting entropy spectra.   
We are performing these experiments on both mathematical 
simulations of networks with changing topologies in known ways, and 
also on real network data both in raw forms and in forms simulated 
from raw data.   The objective is to see if these metrics can be useful in 
the practical sense of monitoring sections of the internet and other 
computer networks.  It is important to note that one can obtain these 
same metrics for subnetworks of the original network. The subnetwork 
would be chosen as that portion of the topology that has incoming or 
outgoing entropy changes that are anomalous. Thus this technique 
allows an automated reduction or hierarchical expansion methodology 
to drill into the network to monitor those subnets that are most 
dynamically aberrant.  
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6   Results of Monitoring Internet Traffic 

 
The mathematical and computational techniques defined above along 
with the associated Markov entropy network metrics can be used to 
analyze the static and track the dynamic behavior of any type of 
network structure.  This includes electrical grids, natural gas pipelines, 
communications networks, financial transactions, disease networks and 
social networks.  But the network tracking that we have performed to 
date concentrated totally on internet traffic as defined by Snort data 
capture at servers of information that is sent from one IP address to 
another IP address. Our objective is to identify anomalies, and 
abnormal behavior relative to normal traffic patterns by monitoring the 
total column (incoming traffic) and row (outgoing traffic) second order 
Renyi’ entropy along with the traffic volume which is independent of 
the traffic topology.  This is similar to separating the buying pattern of 
financial investments from the volume of transactions on the market as 
two separate indicators.   
 
The associated graph shows the total incoming and outgoing entropy as 
a function of time for a server at a university of 30,000 students and 
faculty.   The major anomalies were identified at certain times and 
these were expanded to see the full entropy spectra at those times over 
the network thus identifying the specific nodes that had aberrant 
behavior.   It was determined that these particular anomalies in entropy 
occurred for nodes that at certain times were used to upload and 
download large volumes of audio and video files.          
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7  Conclusions 
 
We have proposed network metrics which are generalized entropy 
functions of the Markov monoid matrix M generated by an altered 
connection matrix C.  When sorted, the associated entropy spectra for 
the columns and rows of C monitor the state and time evolution of the 
incoming and outgoing entropy at network nodes.   These well defined 
functions satisfy our original criteria of being fast to compute 
(compared to eigenvalues), intuitive in interpretation, and hierarchical 
in revealing sequentially detained network information.  They can be 
used to dynamically monitor networks relative to such normal metrical 
values thus identifying when the network statistically alters its intrinsic 
patterns of connectivity.  
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