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Mathematical games and puzzles are great gateways to the beauty of math. They are fun, 

they are usually easy to play, and they often lead the players to a crazy mindset of wanting to 

study the math behind the games! This article is a brief introduction of the findings by me and 

one of my students, Mr. Chris Rufty, during our independent study last year. It all happened after 

I successfully lured him into playing a game. 

Martin Gardner introduced this game in his book New Mathematical Diversions [3].  One 

night in a bar, you and two of your friends are wondering who should pay all the tabs to end the 

wonderful evening. One of your friends then comes up with an idea. On a paper he draws three 

vertical lines, and he randomly puts one of your names at the top of each line. He then folds the 

top of the paper so no one can see the names. The other of your friends then draws several 

random horizontal lines with each one connecting two of the vertical lines. Finally, you add 

several random horizontal lines, and mark an X at the bottom of one of the vertical lines. 

 

Figure 1 
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     X  
  

To determine the payer, each of you in turn traces this ladder. For example, you start to 

trace down from the vertical line with your name on it. Every time you meet an end of a 

horizontal line, continue on the horizontal line until you reach the other end of it, and then turn 

down the vertical line. Repeat this process until you reach the bottom of a vertical line. If you are 

the “lucky” one ending on the X, well, you know what to do. 
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Figure 2 
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This game is very popular in Asia. The Japanese call it Amidakuji, and the Chinese call it 

Ghost Leg. The name Japanese Ladder Game is adopted from S. T. Dougherty and J. F.Vasquez 

[2], and its rules represent just one of the games that can be played using such ladder structures. 

My goal in this article is to introduce you to the rules of the game and provide you with a simple 

mathematical way to solve it. I will try NOT to scare you with confounding mathematical 

theories, although technical terms sometimes may be used out of necessity for the sake of 

convenience. We must begin by clearly defining what a Japanese ladder is: 

 

A Japanese Ladder consists of several vertical lines and several horizontal bars, or 

rungs, connecting two vertical lines. From the top of each vertical line a path is traced through 

the ladder using these three rules: 

1. When tracing a vertical line, continue downward until an end of a rung is 

reached, then continue along the rung. 

2. When tracing a rung, continue along it until the end of the rung is reached, 

then continue down the vertical line. 

3. Repeat steps 1 and 2 until the bottom of a vertical line is reached. 

 

 You already may have noticed that if you trace from the top of any vertical line, you will 

always end at the bottom of one of the vertical lines, though it may not be the same one on which 

you began.  Then if you start from the point at which you just arrived at the bottom and change 

the “downward” rule to “upward,” you will be led back to the same point at which you started 

earlier. This simple experiment indicates an important fact in mathematics. Since this tracing 

technique is invertible, the ladder provides “1 to 1” and “onto” mapping. In other words, every 

time you trace from the top of the ladder, you will always land at a unique spot at the bottom. For 

convenience, in this article we will use consecutive numbers, called Objects, at the top of a 

ladder. And their re-arrangement at the bottom after tracing through the ladder will be called 

Sequence. 

 With the ladder structure, we then can introduce the Japanese Ladder Game. A set of 

vertical lines is provided, along with the top objects and the bottom sequence. One is asked to 

create the rungs in the ladder necessary to match the sequence. 
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 Figure 3 

  1  2  3   4  5 objects 

      

  5  1  4   2  3 sequence 

 

 The word “necessary” in the above request is tricky. We want to create rungs to fit the 

purpose, but we don’t want to create too many rungs. Hence, what necessary means in this 

context is finding the minimum number of rungs to match the sequence. We will call this a 

Minimum Solution. In figure 4 you will see two solutions of a game.  However, the one on the 

right is not a minimum solution. 

 

 

 Figure 4 

    1    2     3                      1    2     3 

       

       

       

        

       

       

       

    3    1     2                      3    1     2 
minimum solution  not minimum solution 

 

 So, how shall we start the quest for a mathematical method of solving these games? Let’s 

check a simple case with only one rung in the ladder. In figure 5, we can see that from the top 

objects to the bottom sequence the two numbers switch their places. So what a rung does is 

create a Permutation of the two numbers.  For this example, we use the notation )2,1(  to 

indicate the permutation. Number 1 moves from the first place to the second place, and number 2 

moves to the first place: 121  . Actually, the notation )1,2(  indicates the same permutation: 

212  . 

 

 Figure 5 

  1  2 

   

   

  2  1 
 

 How about if we have two rungs? In figure 6, number 1 moves to the third place, number 

3 moves to the second place, and number 2 moves to the first place.  Therefore, we will use 
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)2,3,1(  to indicate this permutation: 1231  . Since it forms a cycle, it doesn’t matter 

which number we start with, as long as we have them in the correct order. More specifically, 

)3,1,2()1,2,3()2,3,1(  . From now on, we will call this a 3-cycle, which means it permutes three 

objects.  Hence, an n-cycle is actually a permutation of n objects. 

 

 Figure 6 

  1    2   3 

    

    

    

  2    3   1 
 

 In the previous example (figure 5) we learned that every rung is a 2-cycle. So can we use 

two 2-cycles to describe this two-rung case (figure 6)? Yes, we can.  But we have to start from 

the rung at the lower position. The rung at the lower position permutes 2 and 3, so its notation is 

)3,2( . The one at the upper position permutes 1 and 2, so we will indicate it as )2,1( . Now we 

put them together as our final answer: )2,1)(3,2( . We express our answer as a Product of two 2-

cycles. The reason we start from the rung at the lower place and go upward is because in 

mathematics we operate every permutation notation from the right one to the left one, which is 

the opposite of how we write down these cycles. The 2-cycle at the very right end of this 

product, )2,1(  in this case, is actually the first one to operate. Therefore, it has to be the rung at 

the highest place. And now we can check this new rule to see if it really matches the sequence. 

Number 1 first permutes to the second place by )2,1( , then permutes (from the second place) to 

the third place by )3,2( : 31 . Number 2 permutes to the first place by )2,1( , and does not 

move in )3,2( : 12 . Number 3 does not move in )2,1( , but switches to the second place in 

)3,2( : 23 . Organizing them together we will have 1231  , which is exactly the same 

operation as the 3-cycle )2,3,1( . Since these two expressions have the same result—they create 

the same sequence, we say they are equal: )12)(23()2,3,1(  . The same principle can also apply 

to any n-cycle. We then have a very important result, which we have proved in our larger work-

in-progress [4]: Any n-cycle can be written as a product of (n-1) 2-cycles. Moreover, (n-1) is the 

least number of 2-cycles needed. 

 However, this decomposition is not unique. The 3-cycle )2,3,1(  can also be expressed as 

)2,3)(3,1( , which creates a different ladder that matches the bottom sequence as well.  

 

 Figure 7 
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To make it easy, I will use the following way to decompose an n-cycle: 

),)(,(),)(,)(,(),,,,( 112433221121 nnnnnn aaaaaaaaaaaaaa   . 

For example, )4,3)(3,2)(2,1()4,3,2,1(   and )1,2)(2,3)(3,4)(4,5()1,2,3,4,5(  . 

 Well, from the above discussion, we know that there is a relationship between a bottom 

sequence and a product of 2-cycles. But to make the process easier, I will use an n-cycle as the 

medium. (Another reason to use n-cycles is that based on the results at which we arrived in our 

work-in-progress [4], I can guarantee that I only use the least number of 2-cycles, hence rungs, 

needed! That fits our purpose of finding  minimum solutions.) Let’s use the following figure  

(figure 8) as an example. By analyzing the sequence—number 1 to the second place: 21 , 

number 2 to the fourth place: 42 , number 3 to the fifth place: 53 , number 4 to the third 

place: 34 , and number 5 to the first place: 15 —we can organize it as 

153421  , which indicates the 5-cycle )5,3,4,2,1( . 

 

 Figure 8 

  1  2  3   4  5  

      

  5  1  4   2  3  

 

 We already know that we can decompose this cycle: )5,3)(3,4)(4,2)(2,1()5,3,4,2,1(  . Our 

next step is to draw the corresponding rungs in the ladder. If you want to start from the very left 

2-cycle in the product, you have to draw the rungs from a lower place and go upward. 

(Remember that the left 2-cycle is the last permutation to operate!)  However, I would like to 

start from the very right 2-cycle and then draw the rungs downward. So first I will draw a rung 

connecting the third and the fifth vertical lines (3,5). The second 2-cycle, )3,4( , corresponds to a 

rung connecting the fourth and the third vertical lines—and don’t forget, the )3,4(  rung has to be 

lower than the )5,3(  rung to guarantee that it operates after the )5,3(  rung. Following this pattern 

to create the )4,2(  rung and the )2,1(  rung, we successfully create a minimum solution of the 

Japanese ladder game. Feel free to check! 

 

 Figure 9 

    1    2     3    4     5 

      

      

      

      

      

    5    1     4    2     3 
 

 So, can you use what you just learned to find a minimum solution of the following 

Japanese ladder game? The answer is provided at the end of this article. 
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 Figure 10 

    1    2     3    4     5    6     7 

        

        

        

    5    7     1    3     6     2    4 
 

 In some cases, the sequence in the game may look very complicated. But if we look 

closer, we will realize that we can simplify it. Check the next figure. 

 

 Figure 11 

  1  2  3   4  5  

      

  1  5   2  4  3  

 

 In this sequence, numbers 1 and 4 remain at the same places. So the only cycle we will 

get is )5,3,2( . Actually, since nothing happens to numbers 1 and 4, the game is equivalent to a 

simplified game shown below. We don’t have to consider the first and the fourth vertical lines at 

all. 

 

 Figure 12 

  1  2  3   4  5  

      

  1  5   2  4  3  

 

 Do we now have enough knowledge to solve a random Japanese ladder game? Not yet! 

Let’s look at the following example. By analyzing the sequence of this game—number 1 to the 

third place: 31 , number 3 to the fifth place: 53 , and number 5 to the first place: 15 — 

we complete a 3-cycle, )5,3,1( . 

 

 Figure 13 

  1  2  3   4  5  

      

  5  4   1  2  3  
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 How about numbers 2 and 4? They switch their places and form a 2-cycle, )4,2( . Since 

these two cycles (the 3-cycle and the 2-cycle in the game) do not have an element in common, 

their operations do not affect each other. That means any number from 1 to 5 will only be 

permuted once by only one of the cycles. Also, no matter which cycle goes first, they all create 

the same sequence, )5,3,1)(4,2()4,2)(5,3,1(  . Cases like this are considered to be the same 

products. Two cycles with no elements in common are called Disjoint. And the products of 

disjoint cycles, regardless of the order, are considered the same. In these cases we say the 

product is Unique. For example, )2,1)(4,3)(6,5()6,5)(2,1)(4,3()6,5)(4,3)(2,1(  . 

 There is another important theorem we need to introduce before we start to solve a 

random Japanese ladder game. Any sequence can be uniquely written as an n-cycle, or a product 

of disjoint cycles [4]. This theorem guarantees us that every Japanese ladder game is solvable. 

And we can always find a minimum number of rungs to match the sequence provided. How? 

Here is a brief explanation. According to the theorem, if a sequence can be expressed as an n-

cycle, we already know that we can rewrite it as a product of minimum 2-cycles. And for each 2-

cycle, we can always find a corresponding rung. That means we just need to find all the rungs, 

and then we are done. Figures 8 and 9 clearly demonstrate an example of this. Another example 

is shown below. 

 

 Figure 14 

                1    2     3    4     5     6    7 

        

        

        

        

        

        

        

                6    1     4    7     2     3    5 

)6,3)(3,4)(4,7)(7,5)(5,2)(2,1()6,3,4,7,5,2,1(   
 

If the sequence can be uniquely expressed as a product of disjoint cycles, applying the 

established technique we can decompose each cycle as a product of 2-cycles. For example, 

)3,6,2)(5,4,1(  is a product of two disjoint 3-cycles. We can decompose these two 3-cycles: 

)5,4)(4,1()5,4,1(   and )3,6)(6,2()3,6,2(  . We then can rewrite the product of two 3-cycles as a 

product of 2-cycles: )3,6)(6,2)(5,4)(4,1()3,6,2)(5,4,1(  .  All we then need to do is draw all the 

rungs according to the established rules and then we are done. The following figure shows us the 

case of )3,6,2)(5,4,1( . 
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Figure 15 

   1    2    3   4    5    6 

       

       

       

       

       

   5    3    6   1    4    2  

)3,6)(6,2)(5,4)(4,1()3,6,2)(5,4,1(   
 

 I should remind you that since )5,4,1(  and )3,6,2(  are disjoint, 

)5,4,1)(3,6,2()3,6,2)(5,4,1(  . So for the same sequence, we may create another minimum 

solution like this: )5,4)(4,1)(3,6)(6,2()5,4,1)(3,6,2(  . Check the next figure. 

 

 Figure 16 

   1    2    3   4    5    6 

       

       

       

       

       

   5    3    6   1    4    2  

)5,4)(4,1)(3,6)(6,2()5,4,1)(3,6,2(   
 

 Now you have learned all the necessary techniques. You should be able to solve any 

random Japanese ladder game now. So I will end this article with a small quiz: another Japanese 

ladder game. Try it yourself! Oh, and next time if you and your friends end up in the bar again, 

you know how to avoid the X mark. 

 

 Figure 17 

   1    2    3   4    5    6    7    8    9 

          

          

          

   4    9    7    8    1   6    3    5    2 

 

Note 

 A Japanese ladder game can be played with an additional rule.  Dougherty and Vasquez 

[1], D. Senft [5], and R. Tucker [6] all mention this rule in their papers: rungs can only connect 

two adjacent vertical lines. That means rungs are not allowed to cross over vertical lines. With 

this rule the game becomes more difficult and requires more mathematical theories. Interested 

readers are welcome to check these theories in [1] and [5]. 
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Solution of Figure 10 (not unique) 

 

    1    2     3    4     5    6     7 

        

        

        

        

        

        

        

    5    7     1    3     6     2    4 

 

Solution of Figure 17 (not unique) 

 

   1    2    3   4    5    6    7    8    9 

          

          

          

          

          

          

   4    9    7    8    1   6    3    5    2 
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